Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (92)
  • Open Access

    ARTICLE

    Error Reduction in Gauss-Jacobi-Nyström Quadraturefor Fredholm Integral Equations of the Second Kind

    M. A. Kelmanson1 and M. C. Tenwick1

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.2, pp. 191-210, 2010, DOI:10.3970/cmes.2010.055.191

    Abstract A method is presented for improving the accuracy of the widely used Gauss-Legendre Nyström method for determining approximate solutions of Fredholm integral equations of the second kind on finite intervals. The authors' recent continuous-kernel approach is generalised in order to accommodate kernels that are either singular or of limited continuous differentiability at a finite number of points within the interval of integration. This is achieved by developing a Gauss-Jacobi Nyström method that moreover includes a mean-value estimate of the truncation error of the Hermite interpolation on which the quadrature rule is based, making it particularly accurate at low orders. A… More >

  • Open Access

    ARTICLE

    On the Location of Zeroes of Polynomials from the Stability Analysis of Novel Strong-Form Meshless Random Differential Quadrature Method

    Hua Li1, Shantanu S. Mulay1, Simon See2

    CMES-Computer Modeling in Engineering & Sciences, Vol.54, No.2, pp. 147-200, 2009, DOI:10.3970/cmes.2009.054.147

    Abstract In this paper, the stability characteristics of a novel strong-form meshless method, called the random differential quadrature (RDQ), are studied using the location of zeros or roots of its characteristic polynomials with respect to unit circle in complex plane by discretizing the domain with the uniform or random field nodes. This is achieved by carrying out the RDQ method stability analysis for the 1st-order wave, transient heat conduction and transverse beam deflection equations using both the analytical and numerical approaches. The RDQ method extends the applicability of the differential quadrature (DQ) method over irregular domain, discretized by randomly or uniformly… More >

  • Open Access

    ARTICLE

    The Particular Solutions of Chebyshev Polynomials for Reissner Plates under Arbitrary Loadings

    Chia-Cheng Tsai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.45, No.3, pp. 249-272, 2009, DOI:10.3970/cmes.2009.045.249

    Abstract Analytical particular solutions of Chebyshev polynomials are obtained for problems of Reissner plates under arbitrary loadings, which are governed by three coupled second-ordered partial differential equation (PDEs). Our solutions can be written explicitly in terms of monomials. By using these formulas, we can obtain the approximate particular solution when the arbitrary loadings have been represented by a truncated series of Chebyshev polynomials. In the derivations of particular solutions, the three coupled second-ordered PDE are first transformed into a single six-ordered PDE through the Hörmander operator decomposition technique. Then the particular solutions of this six-ordered PDE can be found in the… More >

  • Open Access

    ARTICLE

    A Highly Accurate Technique for Interpolations Using Very High-Order Polynomials, and Its Applications to Some Ill-Posed Linear Problems

    Chein-Shan Liu1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.3, pp. 253-276, 2009, DOI:10.3970/cmes.2009.043.253

    Abstract Since the works of Newton and Lagrange, interpolation had been a mature technique in the numerical mathematics. Among the many interpolation methods, global or piecewise, the polynomial interpolation p(x) = a0 + a1x + ... + anxn expanded by the monomials is the simplest one, which is easy to handle mathematically. For higher accuracy, one always attempts to use a higher-order polynomial as an interpolant. But, Runge gave a counterexample, demonstrating that the polynomial interpolation problem may be ill-posed. Very high-order polynomial interpolation is very hard to realize by numerical computations. In this paper we propose a new polynomial interpolation… More >

  • Open Access

    ARTICLE

    A Developed New Algorithm for Evaluating Adomian Polynomials

    M. Azreg-Aïnou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.1, pp. 1-18, 2009, DOI:10.3970/cmes.2009.042.001

    Abstract Adomian polynomials (AP's) are expressed in terms of new objects called reduced polynomials (RP's). These new objects, which carry two subscripts, are independent of the form of the nonlinear operator. Apart from the well-known two properties of AP's, curiously enough no further properties are discussed in the literature. We derive and discuss in full detail the properties of the RP's and AP's. We focus on the case where the nonlinear operator depends on one variable and construct the most general analytical expressions of the RP's for small values of the difference of their subscripts. It is shown that each RP… More >

  • Open Access

    ARTICLE

    Particular Solutions of Chebyshev Polynomials for Polyharmonic and Poly-Helmholtz Equations

    Chia-Cheng Tsai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.3, pp. 151-162, 2008, DOI:10.3970/cmes.2008.027.151

    Abstract In this paper we develop analytical particular solutions for the polyharmonic and the products of Helmholtz-type partial differential operators with Chebyshev polynomials at right-hand side. Our solutions can be written explicitly in terms of either monomial or Chebyshev bases. By using these formulas, we can obtain the approximate particular solution when the right-hand side has been represented by a truncated series of Chebyshev polynomials. These formulas are further implemented to solve inhomogeneous partial differential equations (PDEs) in which the homogeneous solutions are complementarily solved by the method of fundamental solutions (MFS). Numerical experiments, which include eighth order PDEs and three-dimensional… More >

  • Open Access

    ARTICLE

    Investigation of Multi Geometric Uncertainties by Different Polynomial Chaos Methodologies Using a Fictitious Domain Solver

    L. Parussini1, V. Pediroda2

    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.1, pp. 29-52, 2008, DOI:10.3970/cmes.2008.023.029

    Abstract In this paper different Polynomial Chaos methods coupled to Fictitious Domain approach have been applied to one- and two- dimensional elliptic problems with multi uncertain variables in order to compare the accuracy and convergence of the methodologies. Both intrusive and non-intrusive methods have been considered, with particular attention to their employment for quantification of geometric uncertainties. A Fictitious Domain approach with Least-Squares Spectral Element approximation has been employed for the analysis of differential problems with uncertain boundary domains. Its main advantage lies in the fact that only a Cartesian mesh, that represents the enclosure, needs to be generated. Excellent accuracy… More >

  • Open Access

    ARTICLE

    Fictitious Domain with Least-Squares Spectral Element Method to Explore Geometric Uncertainties by Non-Intrusive Polynomial Chaos Method

    L. Parussini1, V. Pediroda2

    CMES-Computer Modeling in Engineering & Sciences, Vol.22, No.1, pp. 41-64, 2007, DOI:10.3970/cmes.2007.022.041

    Abstract In this paper the Non-Intrusive Polynomial Chaos Method coupled to a Fictitious Domain approach has been applied to one- and two-dimensional elliptic problems with geometric uncertainties, in order to demonstrate the accuracy and convergence of the methodology. The main advantage of non-intrusive formulation is that existing deterministic solvers can be used. A new Least-Squares Spectral Element method has been employed for the analysis of deterministic differential problems obtained by Non-Intrusive Polynomial Chaos. This algorithm employs a Fictitious Domain approach and for this reason its main advantage lies in the fact that only a Cartesian mesh needs to be generated. Excellent… More >

  • Open Access

    ARTICLE

    Optimization Algorithm for Reduction the Size of Dixon Resultant Matrix: A Case Study on Mechanical Application

    Shang Zhang1, *, Seyedmehdi Karimi2, Shahaboddin Shamshirband3, 4, *, Amir Mosavi5,6

    CMC-Computers, Materials & Continua, Vol.58, No.2, pp. 567-583, 2019, DOI:10.32604/cmc.2019.02795

    Abstract In the process of eliminating variables in a symbolic polynomial system, the extraneous factors are referred to the unwanted parameters of resulting polynomial. This paper aims at reducing the number of these factors via optimizing the size of Dixon matrix. An optimal configuration of Dixon matrix would lead to the enhancement of the process of computing the resultant which uses for solving polynomial systems. To do so, an optimization algorithm along with a number of new polynomials is introduced to replace the polynomials and implement a complexity analysis. Moreover, the monomial multipliers are optimally positioned to multiply each of the… More >

  • Open Access

    ARTICLE

    Solving Fractional Integro-Differential Equations by Using Sumudu Transform Method and Hermite Spectral Collocation Method

    Y. A. Amer1, A. M. S. Mahdy1, 2, *, E. S. M. Youssef1

    CMC-Computers, Materials & Continua, Vol.54, No.2, pp. 161-180, 2018, DOI:10.3970/cmc.2018.054.161

    Abstract In this paper we are looking forward to finding the approximate analytical solutions for fractional integro-differential equations by using Sumudu transform method and Hermite spectral collocation method. The fractional derivatives are described in the Caputo sense. The applications related to Sumudu transform method and Hermite spectral collocation method have been developed for differential equations to the extent of access to approximate analytical solutions of fractional integro-differential equations. More >

Displaying 81-90 on page 9 of 92. Per Page