Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (76)
  • Open Access

    ARTICLE

    Bulk CO2-based Amorphous Triols Used for Designing Biocompatible Shape-Memory Polyurethanes

    Shunjie Liu1,2, Yusheng Qin1,*, Xianhong Wang1,*, Fosong Wang1

    Journal of Renewable Materials, Vol.3, No.2, pp. 101-112, 2015, DOI:10.7569/JRM.2014.634140

    Abstract Precursors with sharp crystalline transition temperature have attracted signifi cant attention in the fi eld of shape-memory materials; however, seldom have reports been related to amorphous ones with industrial application prospects. This study introduced a new family of amorphous CO2 -based hydroxyl-telechelic three-armed oligo(carbonate-ether) triol (Triol) with controllable molecular weight (Mn) and carbonate unit content (CU), which was coupled with PEG and 1,6-hexamethylene diisocyanate (HDI) to afford crosslinked polyurethanes (PU) networks with well-defi ned architecture. A crosslinking point was provided by Triol and PEG was used to afford networks some crystallinity. The resulting networks were characterized using attentuated total refl… More >

  • Open Access

    ARTICLE

    Micromechanical Viscoelastic Analysis of Flax Fiber Reinforced Bio-Based Polyurethane Composites

    Nassibeh Hosseini1, Samad Javid1, Ali Amiri1, Chad Ulven1,*, Dean C. Webster2, Ghodrat Karami1

    Journal of Renewable Materials, Vol.3, No.3, pp. 205-215, 2015, DOI:10.7569/JRM.2015.634112

    Abstract In this study, a novel, bio-based polyol was used in the formulation of a polyurethane (PU) matrix for a composite material where fl ax fi ber was used as the reinforcement. The viscoelastic properties of the matrix and fl ax fi ber were determined by a linear viscoelastic model through experimentation and the results were used as input for the material properties in the computational model. A fi nite element micromechanical model of a representative volume element (RVE) in terms of repeating unit cells (RUC) was developed to predict the mechanical properties of composites. Six loading conditions were applied on… More >

  • Open Access

    ARTICLE

    Analysis of the Performances and Optimization of Polyurethane Concrete with a Large Percentage of Fly Ash

    Tingting Huo1, Jiaquan Xue2,*, Zhi’an Fu3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 437-450, 2023, DOI:10.32604/fdmp.2022.020696

    Abstract The properties of polyurethane concrete containing a large amount of fly ash are investigated, and accordingly, a model is introduced to account for the influence of fly ash fineness, water ratio, and loss of ignition (LOI) on its mechanical performances. This research shows that, after optimization, the concrete has a compressive strength of 20.8 MPa, a flexural strength of 3.4 MPa, and a compressive modulus of elasticity of 19.2 GPa. The main factor influencing 28 and 90 d compressive strength is fly ash content, water-binder ratio, and early strength agent content. More >

  • Open Access

    ARTICLE

    Development and Characterization of Eco-Friendly Non-Isocyanate Urethane Monomer from Jatropha curcas Oil for Wood Composite Applications

    Samsul Bhakri1, Muhammad Ghozali2,*, Edy Cahyono1, Evi Triwulandari2, Witta Kartika Restu2, Nissa Nurfajrin Solihat3, Apri Heri Iswanto4,5, Petar Antov6, Viktor Savov6, Lee Seng Hua7, Erika Ayu Agustiany8, Lubos Kristak9, Widya Fatriasari3,*

    Journal of Renewable Materials, Vol.11, No.1, pp. 41-59, 2023, DOI:10.32604/jrm.2022.023151

    Abstract The aim of this research work was to evaluate the potential of using renewable natural feedstock, i.e., Jatropha curcas oil (JCO) for the synthesis of non-isocyanate polyurethane (NIPU) resin for wood composite applications. Commercial polyurethane (PU) is synthesized through a polycondensation reaction between isocyanate and polyol. However, utilizing toxic and unsustainable isocyanates for obtaining PU could contribute to negative impacts on the environment and human health. Therefore, the development of PU from eco-friendly and sustainable resources without the isocyanate route is required. In this work, tetra-n-butyl ammonium bromide was used as the activator to open the epoxy ring with 3-Aminopropyltriethoxisylane… More > Graphic Abstract

    Development and Characterization of Eco-Friendly Non-Isocyanate Urethane Monomer from <i>Jatropha curcas</i> Oil for Wood Composite Applications

  • Open Access

    ARTICLE

    Self-Blowing Non-Isocyanate Polyurethane Foams Based on Hydrolysable Tannins

    Elham Azadeh1, Xinyi Chen2, Antonio Pizzi2,*, Christine Gérardin1, Philip Gérardin1, Hisham Essawy3

    Journal of Renewable Materials, Vol.10, No.12, pp. 3217-3227, 2022, DOI:10.32604/jrm.2022.022740

    Abstract Non-isocyanate polyurethane (NIPU) foams using a hydrolysable tannin, also vulgarly called tannic acid, namely here commercial chestnut wood tannin extract was prepared. Compression strength did not appear to depend on the foam apparent density while the formulation composition of the NIPU foams has been shown to be more determinant. These NIPU foams appeared to be self-extinguishing once the high temperature flame is removed. The ignition time gave encouraging results but for improved fire resistance the foams may need some fire-retardant addition. FTIR spectrometry showed the formation of non-isocyanate urethane linkages. Thermogravimetric analysis indicated a good thermal resistance of these foams,… More >

  • Open Access

    ARTICLE

    Bio-Inspired Gelatin-Based Adhesive Modified with Waterborne Polyurethane on Click Chemistry

    Xuechuan Wang1,2, Wenying Zhao1,2, Xugang Dang1,2,*, Yiqing Wang1,2, Huijie Zhang1,2,*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2747-2763, 2022, DOI:10.32604/jrm.2022.021555

    Abstract As a non-toxic, highly reactive biomass material, gelatin is wildly used as the component of biomass-based adhesive. However, like most aqueous adhesives, gelatin-based adhesives suffer from long solidifying time or high solidifying temperature due to the low volatility of water, which highly limits the application potential of gelatinbased adhesives. Inspired by the fast adhesion of marine organisms through the formation of chemical crosslinks, herein, a kind of low temperature curable eco-friendly gelatin-based adhesive with good adhesive properties and fast curing at low temperature is developed by introducing clicking chemical Diels-Alder (DA) reaction between blocked waterborne polyurethane (MWPU) and gelatin. The… More > Graphic Abstract

    Bio-Inspired Gelatin-Based Adhesive Modified with Waterborne Polyurethane on Click Chemistry

  • Open Access

    ARTICLE

    BaTiO3/Polyurethane Dielectric Composites with Diels-Alder Bond for Improved Self-Healing Properties

    Junlong Yao1,2, Wei Nie1, Zhengguang Sun2, Huan Yang1,3,*, Yu Guan1, Lin Gao4, Xueliang Jiang1, Mujie Guo1, Chuanxi Xiong5,*

    Journal of Renewable Materials, Vol.10, No.9, pp. 2355-2364, 2022, DOI:10.32604/jrm.2022.019339

    Abstract In general, self-healing dielectric composites are mainly composed of polar hydrogen bonds, which have high hydrophilicity and are unsuitable for humid environment. Dielectric composite with Diels-Alder (D-A) bond contains covalent bonds, it can be adopted as an efficient self-healing material. Here, we construct self-healing barium titanate (BT)/polyurethane (PU) dielectric composites by adopting PU with D-A bond as matrix (BT/ PU-DA). The prepared 10% BT/PU-DA composite exhibits superior self-healing ability than that of PU-DA. Moreover, its dielectric constant can reach 9.3 with a loss of only 0.04 at 1000 Hz and maintain 93% repair effi- ciency of tensile strength. The experimental… More >

  • Open Access

    ARTICLE

    A Research on the Behavior of a Polyurethane Polymer Waterproof Material Used in Bridge Geotechnical Applications

    Yuzhuo Wang1,2, Zhichao Xu2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 897-906, 2022, DOI:10.32604/fdmp.2022.018972

    Abstract Polyurethane is enjoying a widespread use as a polymer-based waterproof material in civil engineering In the present study we consider a temperature-sensitive waterproof and moisture-permeable polyurethane material (PTPE-PU) characterized by one or more phase transition temperatures (critical temperatures). Near the critical temperature, the waterproof and moisture permeability of polyurethane undergo abrupt changes. The related stability, thermal performance, water resistance, hydrostatic pressure, and moisture permeability are investigated here considering a PTPE-PU traditionally used in bridge geotechnical engineering. The results show that the moisture permeability of the coated bridge rock and soil undergo sudden variations near the crystallization and melting temperature of… More >

  • Open Access

    ARTICLE

    Preparation and Characterization of Waterborne Polyurethane with Unique Nanoparticles by Controlling Water

    Xing Zhou*

    Journal of Renewable Materials, Vol.10, No.6, pp. 1623-1639, 2022, DOI:10.32604/jrm.2022.018935

    Abstract A facile method, focusing on emulsification, chain extension and dispersion process in preparing waterborne polyurethane, was developed to prepare emulsion with rod-like nanoparticles. The facile method involves a water addition procedure by in situ generated water to react with polyurethane prepolymer instead of the external water addition process. As a comparison, waterborne polyurethane was synthesized through the external water addition process. According to the characterization methods including FTIR, 1H-NMR, TEM and water swelling experiments, it is suggested there are two kinds of hydrogen bonds interactions in hard/soft domain of the novel polyurethane, and the phase separation of hard/soft domains increases… More > Graphic Abstract

    Preparation and Characterization of Waterborne Polyurethane with Unique Nanoparticles by Controlling Water

  • Open Access

    ARTICLE

    Bio-Based Trivalent Phytate: A Novel Strategy for Enhancing Fire Performance of Rigid Polyurethane Foam Composites

    Bing Zhang1, Sujie Yang1, Mengru Liu1, Panyue Wen2, Xiuyu Liu1, Gang Tang1,*, Xiangrong Xu3,4,*

    Journal of Renewable Materials, Vol.10, No.5, pp. 1201-1220, 2022, DOI:10.32604/jrm.2022.018047

    Abstract Biomass phytic acid has potential flame retardant value as the main form of phosphorus in plant seeds. In this study, phytate-based flame retardants aluminum phytate (PA-Al) and iron phytate (PA-Fe) were synthesized and characterized. Subsequently, they were introduced into rigid polyurethane foam (RPUF) as flame retardants by one-step water-blown method. The results indicated that RPUF/PA-Fe30 exhibited the highest char residue of 22.1 wt%, significantly higher than 12.4 wt% of RPUF. Cone calorimetry analysis showed that the total heat release (THR) of RPUF/PA-Al30 decreased by 17.0% and total smoke release (TSR) decreased by 22.0% compared with pure RPUF, which were the lowest, demonstrating… More > Graphic Abstract

    Bio-Based Trivalent Phytate: A Novel Strategy for Enhancing Fire Performance of Rigid Polyurethane Foam Composites

Displaying 21-30 on page 3 of 76. Per Page