Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (76)
  • Open Access

    ARTICLE

    Manufacturing Process Selection of “Green” Oil Palm Natural Fiber Reinforced Polyurethane Composites Using Hybrid TEA Criteria Requirement and AHP Method for Automotive Crash Box

    N. S. B. Yusof1,2, S. M. Sapuan1,3,*, M. T. H. Sultan1,4, M. Jawaid1

    Journal of Renewable Materials, Vol.8, No.6, pp. 647-660, 2020, DOI:10.32604/jrm.2020.08309

    Abstract In this study, the best manufacturing process will be selected to build an automotive crash box using green oil palm natural fibre-reinforced polyurethane composite materials. This paper introduces an approach consist of technical aspects (T), the economic point of view (E) and availability (A), and it’s also called as TEA requirement. This approach was developed with the goal of assisting the design engineer in the selection of the best manufacturing process during the design phase at the criteria selection stage. In this study, the TEA requirement will integrate with the analytical hierarchy process (AHP) to assist decision makers or manufacturing… More >

  • Open Access

    ARTICLE

    Preparation and Characterization of Waterborne Polyurethane/Cellulose Nanocrystal Composite Membrane from Recycling Waste Paper

    Xing Zhou1,*, Xin Zhang1, Dong Wang1, Changqing Fang1,*, Wanqing Lei1, Zhigang Huang2, Yonghua Song1, Xinyu He1, Yingwei Huang1

    Journal of Renewable Materials, Vol.8, No.6, pp. 631-645, 2020, DOI:10.32604/jrm.2020.010176

    Abstract Cellulose plays a key role in abundant organic natural materials meeting the increasing demand for green and biocompatible products. The highly crystalline nanoscale component of cellulose nanocrystals has recently attracted great attention due to the versatile performance as filler or matrix in producing functional materials. In this work, we prepared the waterborne polyurethane via a prepolymer process, and obtained cellulose and cellulose nanocrystals from waste paper via a facile acid hydrolysis process. After that, the cellulose nanocrystals were assembled into film and mixed with polyurethane to prepare flexible polyurethane/cellulose nanocrystals composite membrane with different soaking time. The correlation between the… More >

  • Open Access

    REVIEW

    Plant Oil-Based Waterborne Polyurethanes: A Brief Review

    Verónica L. Mucci1, M. E. Victoria Hormaiztegui2, Mirta I. Aranguren1,*

    Journal of Renewable Materials, Vol.8, No.6, pp. 579-601, 2020, DOI:10.32604/jrm.2020.09455

    Abstract The increasing pressure from consumers and policy makers to reduce the use of synthetic polymers, whose production contributes to the depletion of non-renewable resources and are usually non- biodegradable, has prompted the efforts to find suitable bio-based sources for the production of polymers. Vegetable oils have been a frequently spotted in this search because they are versatile, highly available and a low cost liquid biosource, which can be used in the synthesis of a wide plethora of different polymers and reactive monomers. Following the same idea of reducing the environmental stress, the traditional polyurethanes that are soluble in organic solvents… More >

  • Open Access

    ARTICLE

    Ultrasound Assisted Synthesis of Starch Nanocrystals and It’s Applications with Polyurethane for Packaging Film

    Vikas S. Hakke1, Uday D. Bagale1, Sami Boufi2, G. Uday Bhaskar Babu1, Shirish H. Sonawane1,*

    Journal of Renewable Materials, Vol.8, No.3, pp. 239-250, 2020, DOI:10.32604/jrm.2020.08449

    Abstract Starch nanocrystals (SNC) were prepared from maize starch using ultrasound assisted acid hydrolysis. The process takes less time for the generation of SNC, which is advantageous over conventional acid hydrolysis. The synthesized SNC were characterized using X-ray diffraction, dynamic light scattering, zeta potential and transmission electron microscopy (TEM). Particle size and TEM data show that the particles were near to 150 nm, with oval morphology. The SNC with higher surface charge are obtained with this innovative approach as compared to conventional acid hydrolysis. Because of high surface charge and oval like morphology, the SNC performed well in reinforcing a polyurethane… More >

  • Open Access

    ARTICLE

    Thermally Reversible, Self-Healing Polyurethane Based on Propyl Gallate and Polyurethane Prepolymers with Varied Isocyanate Content

    Haiyang Ding1,2,3,4,5, Xiaohua Yang1,2,3,4,5, Lina Xu1,2,3,4,5, Shouhai Li1,2,3,4,5, Jianling Xia1,2,3,4,5, Mei Li1,2,3,4,5,*

    Journal of Renewable Materials, Vol.8, No.1, pp. 1-11, 2020, DOI:10.32604/jrm.2020.08165

    Abstract Thermosetting polyurethanes are widely used in various fields owing to their excellent elasticity, strength and solvent resistance. Three environmental friendly propyl gallate-based self-healing polyurethanes were prepared from polyurethane prepolymers with varying isocyanate content. The thermal stabilities of the polyurethanes were tested using thermogravimetric analysis. Their self-healing and mechanical properties were analyzed using a universal testing machine and dynamic thermomechanical analysis. The polyurethanes were found with high self-healing ability and excellent mechanical properties due to the absence of phenolic carbamate. These qualities improved with increased isocyanate content and the prolonged selfhealing time. We found, therefore, that the propyl gallate-based polyurethane has… More >

  • Open Access

    Synthesis of Novel Biobased Polyol via Thiol-Ene Chemistry for Rigid Polyurethane Foams

    N. Elbers1, C. K. Ranaweera1, M. Ionescu2, X. Wan2, P. K. Kahol3, Ram K. Gupta1,2*

    Journal of Renewable Materials, Vol.5, Suppl.1, pp. 74-83, 2017, DOI:10.7569/JRM.2017.634137

    Abstract The objective of this research is to prepare rigid polyurethane (PU) foams from α-phellandrene, a biobased compound. Two types of polyols were synthesized by reacting α-phellandrene with 2-mercaptoethanol and α-thioglycerol via thiol-ene chemistry route. The completion of the reaction was identified by using FTIR. PU foams from α-phellandrene polyols and commercial polyol were compared with regard to foam characteristics and properties. All the PU foams showed apparent density of 28–39 kg/m3 with closed-cell content above 90%. The highest glass transition temperature of 229 °C and compressive strength of 220 kPa were observed for the polyol synthesized by reacting α-phellandrene and… More >

  • Open Access

    Biobased Polyols Using Thiol-Ene Chemistry for Rigid Polyurethane Foams with Enhanced Flame-Retardant Properties

    C. K. Ranaweera1, M. Ionescu2, N. Bilic2, X. Wan2, P. K. Kahol3, Ram K. Gupta1,2*

    Journal of Renewable Materials, Vol.5, Suppl.1, pp. 1-12, 2017, DOI:10.7569/JRM.2017.634105

    Abstract Biobased polyol was synthesized using 1-thioglycerol and limonene, an extract of orange peel, via thiol-ene chemistry as an alternative to petrochemical-based polyol for preparation of rigid polyurethane foams (RPFs). Fire-retardant polyurethane foams were prepared by addition of different amounts of dimethyl methyl phosphonate (DMMP) in the polyol. The effect of DMMP on the properties of RPFs was studied. All the biobased RPFs maintained a regular cell structure with uniform cell distribution and over 90% of closed cell. The RPFs showed excellent compressive strength of ~230 kPa without addition of DMMP. These RPFs almost retained their specific compressive strength even when… More >

  • Open Access

    ARTICLE

    Improving the Sound Absorption Properties of Flexible Polyurethane (PU) Foam using Nanofibers and Nanoparticles

    Roohalah Hajizadeh1, Ali Khavanin2,*, Mohammad Barmar3, Ahmad Jonidi Jafari4, Somayeh Farhang Dehghan5

    Sound & Vibration, Vol.53, No.5, pp. 207-222, 2019, DOI:10.32604/sv.2019.06523

    Abstract Polyurethane foam as the most well-known absorbent materials has a suitable absorption coefficient only within a limited frequency range. The aim of this study was to improve the sound absorption coefficient of flexible polyurethane (PU) foam within the range of various frequencies using clay nanoparticles, polyacrylonitrile nanofibers, and polyvinylidene fluoride nanofibers. The response surface method was used to determine the effect of addition of nanofi- bers of PAN and PVDF, addition of clay nanoparticles, absorbent thickness, and air gap on the sound absorption coefficient of flexible polyurethane foam (PU) across different frequency ranges. The absorption coefficient of the samples was… More >

  • Open Access

    ARTICLE

    Steam Exploded Peanut Shell Fiber as the Filler in the Rigid Polyurethane Foams

    Zehui Ju1, Qian He1, Tianyi Zhan1, Haiyang Zhang1,*, Lin Sun1, Lu Hong1, Xinyi Shi2, Xiaoning Lu1,*

    Journal of Renewable Materials, Vol.7, No.11, pp. 1077-1091, 2019, DOI:10.32604/jrm.2019.07525

    Abstract In this study, steam exploded peanut shell fibers (SE-PSFs) were utilized to fabricate with rigid polyurethane foam (RPUF) in order to improve sound absorption performance and hydrothermal weather resistance. Optimized method of SE treatment, RPUF preparation and flame retardant treatment were selected to prepare SE-PSF/RPUF composites in this experiment. Physical and mechanical properties including density, water absorption capacity, thickness swelling rate, compressive strength, thermal conductivity and average sound absorption coefficient of SE-PSF/RPUF were investigated and compared with the control (PRUF). The results showed that the density, water absorption capacity, thickness swelling rate and thermal conductivity showed an increasing trend with… More >

  • Open Access

    ARTICLE

    Lightweight Biobased Polyurethane Nanocomposite Foams Reinforced with Pineapple Leaf Nanofibers (PLNFs)

    Xiaojian Zhou1,2, Hui Wang1, Jun Zhang2, Zhifeng Zheng1, Guanben Du1,2,*

    Journal of Renewable Materials, Vol.6, No.1, pp. 68-74, 2018, DOI:10.7569/JRM.2017.634150

    Abstract Pineapple leaf nanofibers (PLNFs) extracted from pineapple leaf fiber were used for reinforcing biobased polyurethane foam (BPU). The dispersion performance of PLNF in the foaming mixture system, nanocomposite foaming behavior, cell morphology, cell size, density, compressive strength and dimensional stability were investigated. The viscosity of the mixtures increased with increasing the PLNF content. The addition of a tiny amount of PLNF did not influence the exothermic temperature of the foam system, but reduced the expansion and gel time of the nanocomposite foams. This reduced time was found to increase the production efficiency. Scanning electron microscopy (SEM) images showed that the… More >

Displaying 41-50 on page 5 of 76. Per Page