Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (76)
  • Open Access

    REVIEW

    Recent Development of Cardanol Based Polymer Materials-A Review

    Puyou Jia1, Fei Song1, Qiaoguang Li2,*, Haoyu Xia3, Mei Li1,*, Xugang Shu2, Yonghong Zhou1

    Journal of Renewable Materials, Vol.7, No.7, pp. 601-619, 2019, DOI:10.32604/jrm.2019.07011

    Abstract Polymers from renewable resources are receiving tremendous attention due to the increasing concerns on the depletion of fossil oils and deteriorated environments. Cardanol, as an abundant and renewable chemical raw material, has been widely used for the production of renewable polymer materials via converting into various of chemical monomers with active functional groups. This comprehensive review deals with various aspects of cardanol as a starting material the preparing various polymer and polymer composites such as benzoxazine resins, phenolic resin, polyurethanes, epoxy resin, vinyl ester polymers, polyamide and cyanate ester resins. The assessment of the future prospects for the use of… More >

  • Open Access

    REVIEW

    Tannin-Based Biofoams-A Review

    Antonio Pizzi*

    Journal of Renewable Materials, Vol.7, No.5, pp. 477-492, 2019, DOI:10.32604/jrm.2019.06511

    Abstract This review details the development of tannin-based biofoams for fire resistance and acoustic insulation and details the different varieties of these foams that have been developed, from tannin-furanic self-blowing foams to tannin-furanic polyurethanes and finally non-isocyanate tannin-based-carbohydrates polyurethanes (NIPU). More >

  • Open Access

    ARTICLE

    Glucose-Biobased Non-Isocyanate Polyurethane Rigid Foams

    Xuedong Xi1,2, A. Pizzi1,*, C. Gerardin3, Guanben Du2

    Journal of Renewable Materials, Vol.7, No.3, pp. 301-312, 2019, DOI:10.32604/jrm.2019.04174

    Abstract Glucose-based non-isocyanate polyurethanes (NIPU) were prepared by reaction of glucose with dimethyl carbonate and hexamethylene diamine. These were used to prepare partially biobased polyurethane foams by reaction with NaHCO3 as a blowing agent and addition of a silane coupling agent having different functions such as coreactant and adjuvant to obtain more uniform and smaller cells. The foams were foamed and hardened by applying heat. The foams presented very limited fire resistance indicating that as for synthetic polyurethane foams the eventual use of a fire retardant appears to be necessary. The 2 hours water absorption was used to indicate if close… More >

  • Open Access

    ARTICLE

    Properties of Polyurethane Coatings Based on Linseed Oil Phosphate Ester Polyol

    A. Abolins*, V. Yakushin and D. Vilsone

    Journal of Renewable Materials, Vol.6, No.7, pp. 737-745, 2018, DOI:10.32604/JRM.2018.00119

    Abstract Linseed oil was epoxidized using hydrogen peroxide (H2O2), acetic acid (AcOH) and ion exchange resin Amberlite IR-120 as a catalyst. Epoxidized oil was separately dissolved in isopropyl alcohol (IPA) or diethylene glycol butyl ether (DGBE) and phosphorylated with different amounts of phosphoric (H3PO4) acid (1%, 2%, 3% and 5%). The formation of phosphate polyesters was confirmed by Fourier-transform infrared (FTIR) and 31P nuclear magnetic resonance (NMR) spectra. Based on the synthesized polyols, polyurethane (PU) coatings were prepared. PU coating based on linseed oil diethylene glycol ester polyol was used as the reference. For the characterization of coatings, mechanical tests and… More >

  • Open Access

    ARTICLE

    Impact of Natural Oil-Based Recycled Polyols on Properties of Cast Polyurethanes

    Hynek Beneš, Aleksandra Paruzel*, Jiří Hodan and Olga Trhlíková

    Journal of Renewable Materials, Vol.6, No.7, pp. 697-706, 2018, DOI:10.32604/JRM.2018.00011

    Abstract In this study, castor oil, rapeseed oil and medium chain triglycerides of coconut oil, were transesterified by means of 2-ethyl-2-hydroxymethyl-1,3-propanediol (trimethylolpropane) and consequently used to convert polycarbonate waste from end-of-life vehicles into liquid polyols. The prepared recycled polyols, composed uniquely of renewable and recycled components, had a hydroxyl number of ca. 250 mg KOH·g−1. They were successfully applied as 100% replacement of a virgin polyol for preparation of solid crosslinked polyurethanes (PU) by solvent-free casting. The produced rigid cast PU exhibited the main transition temperature ranging from 44°C to 53°C, the hardness value from 46 to 61 Shore D and… More >

  • Open Access

    ARTICLE

    Viscoelastic and Thermal Properties of Polyurethane Foams Obtained from Renewable and Recyclable Components

    S. Gaidukovs1,2,*, G. Gaidukova2, A. Ivdre1,3, U. Cabulis3

    Journal of Renewable Materials, Vol.6, No.7, pp. 755-763, 2018, DOI:10.7569/JRM.2018.634112

    Abstract This article deals with the study of the viscoelastic and thermal properties of polyurethane (PU) rigid foams from biobased and recycled components. Rapeseed oil (RO) and recycled poly(ethylene terephthalate) (PET) were used to synthesize PU polyols. Addition of adipic acid (ADA) to polyol resulted in improved thermal and viscoelastic properties of foam materials. ADA content was varied from 1 to 6 wt%. Results of the dynamic mechanical spectra indicate an increase of the storage modulus E′ and the loss modulus E″ in the whole temperature range for specimens with higher loading of ADA. In addition, damping factor shifted to higher… More >

  • Open Access

    ARTICLE

    Cardanol-Based Polyurethane Coatings via Click Chemistry: An Eco-friendly Approach

    Kunal Wazarkar, Anagha Sabnis*

    Journal of Renewable Materials, Vol.6, No.5, pp. 517-528, 2018, DOI:10.7569/JRM.2017.634181

    Abstract This research work discloses the preparation of polyurethane coatings from cardanol modified using thiolene chemistry, wherein unsaturated long alkyl chain of cardanol was successfully utilized via thiol-ene click reaction to synthesize polyol. For this purpose, cardanol and thioglycerol was reacted in the presence of Irgacure 184 (photoinitiator) and 1,8-Diazabicyclo[5.4.0]undec-7-ene (catalyst) and exposed to UV light for 12 h at 80 °C. One mole of thioglycerol was successfully added across the double bond of fatty chain of cardanol and confirmed by chemical and spectroscopic analysis. Further, the polyol thus prepared was cured with various polyisocyanates, viz., N-75 (HDI based), L-67/BA (TDI… More >

  • Open Access

    ARTICLE

    Mechanical and Thermal Properties of Sugar Palm Fiber Reinforced Thermoplastic Polyurethane Composites: Effect of Silane Treatment and Fiber Loading

    A. Atiqah1, M. Jawaid1,*, S. M. Sapuan1,2, M. R. Ishak3

    Journal of Renewable Materials, Vol.6, No.5, pp. 477-492, 2018, DOI:10.7569/JRM.2017.634188

    Abstract The aim of the present study was to develop sugar palm fiber (SPF) reinforced thermoplastic polyurethane (TPU) composites and to investigate the effects of fiber surface modification by 2% silane treatment and fiber loading (0, 10, 20, 30, 40 and 50 wt%) on the mechanical and thermal properties of the obtained composites. Surface treatment was employed to improve the fiber-matrix interface, which was expected to boost the mechanical strength of the composites, in terms of tensile, flexural and impact properties. Thermal properties were also investigated by thermal gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) to assess the thermal stability… More >

  • Open Access

    ARTICLE

    Polyurethane Composites Synthesized Using Natural Oil-Based Polyols and Sisal Fibers

    S. Michałowski1, M. A. Mosiewicki2*, M. Kuran´ska1, M. I. Aranguren2, A. Prociak1

    Journal of Renewable Materials, Vol.6, No.4, pp. 426-437, 2018, DOI:10.7569/JRM.2017.634163

    Abstract Elastomeric polyurethanes were prepared from a reference polyurethane system modified with biobased polyols synthesized using rapeseed or palm oils. The reference material was modified by replacement of the commercial polyol by 10% of biopolyols and also by addition of sisal fibers up to 5 wt%. The higher functionality of the biopolyols increased the crosslinking density of the networks and this was reflected by an increase in hardness and a decrease in water absorption. The effect of the sisal fibers mainly improved the mechanical and thermomechanical properties of the system with rapeseed oil because of good dispersion and strong fiber-matrix interaction.… More >

  • Open Access

    ARTICLE

    Polyurethanes from Kraft Lignin without Using Isocyanates

    F.J. Santiago-Medina1, M.C. Basso1, A. Pizzi1,2,*, L. Delmotte3

    Journal of Renewable Materials, Vol.6, No.4, pp. 413-425, 2018, DOI:10.7569/JRM.2017.634172

    Abstract The reaction of a desulphurized kraft lignin with hexamethylene diamine and dimethyl carbonate has allowed the development of isocyanate-free polyurethane resins. The present research work is based on previous studies made with hydrolyzable and condensed tannins, but takes advantage of the higher number of hydroxyl groups present in lignin and their different aliphatic and aromatic character. The obtained materials were analyzed by Fourier transform infrared (FTIR) spectroscopy, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and solid-state cross-polarization/magic angle spinning (CP MAS) 13 C nuclear magnetic resonance (NMR), which have revealed the presence of urethane functions. The interpretation of the… More >

Displaying 51-60 on page 6 of 76. Per Page