Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access

    ARTICLE

    Short-Term Wind Power Prediction Based on Optimized VMD and LSTM

    Xinjian Li1, Yu Zhang1,2,*, Zewen Wang1, Zhenyun Song1

    Energy Engineering, Vol.122, No.11, pp. 4603-4619, 2025, DOI:10.32604/ee.2025.065799 - 27 October 2025

    Abstract Power prediction has been critical in large-scale wind power grid connections. However, traditional wind power prediction methods have long suffered from problems, for instance low prediction accuracy and poor reliability. For this purpose, a hybrid prediction model (VMD-LSTM-Attention) has been proposed, which integrates the variational modal decomposition (VMD), the long short-term memory (LSTM), and the attention mechanism (Attention), and has been optimized by improved dung beetle optimization algorithm (IDBO). Firstly, the algorithm’s performance has been significantly enhanced through the implementation of three key strategies, namely the elite group strategy of the Logistic-Tent map, the nonlinear… More >

  • Open Access

    ARTICLE

    Human Motion Prediction Based on Multi-Level Spatial and Temporal Cues Learning

    Jiayi Geng1, Yuxuan Wu1, Wenbo Lu2, Pengxiang Su1,*, Amel Ksibi3, Wei Li1, Zaffar Ahmed Shaikh4,5, Di Gai6

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3689-3707, 2025, DOI:10.32604/cmc.2025.066944 - 23 September 2025

    Abstract Predicting human motion based on historical motion sequences is a fundamental problem in computer vision, which is at the core of many applications. Existing approaches primarily focus on encoding spatial dependencies among human joints while ignoring the temporal cues and the complex relationships across non-consecutive frames. These limitations hinder the model’s ability to generate accurate predictions over longer time horizons and in scenarios with complex motion patterns. To address the above problems, we proposed a novel multi-level spatial and temporal learning model, which consists of a Cross Spatial Dependencies Encoding Module (CSM) and a Dynamic… More >

  • Open Access

    ARTICLE

    Software Defect Prediction Based on Semantic Views of Metrics: Clustering Analysis and Model Performance Analysis

    Baishun Zhou1,2, Haijiao Zhao3, Yuxin Wen2, Gangyi Ding1, Ying Xing3,*, Xinyang Lin4, Lei Xiao5

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5201-5221, 2025, DOI:10.32604/cmc.2025.065726 - 30 July 2025

    Abstract In recent years, with the rapid development of software systems, the continuous expansion of software scale and the increasing complexity of systems have led to the emergence of a growing number of software metrics. Defect prediction methods based on software metric elements highly rely on software metric data. However, redundant software metric data is not conducive to efficient defect prediction, posing severe challenges to current software defect prediction tasks. To address these issues, this paper focuses on the rational clustering of software metric data. Firstly, multiple software projects are evaluated to determine the preset number… More >

  • Open Access

    ARTICLE

    A Novel Face-to-Skull Prediction Based on Face-to-Back Head Relation

    Tien-Tuan Dao1, Lan-Nhi Tran-Ngoc2,3, Trong-Pham Nguyen-Huu2,3, Khanh-Linh Dinh-Bui2,3, Nhat-Minh Nguyen2,3, Ngoc-Bich Le2,3, Tan-Nhu Nguyen2,3,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3345-3369, 2025, DOI:10.32604/cmc.2025.065279 - 03 July 2025

    Abstract Skull structures are important for biomechanical head simulations, but they are mostly reconstructed from medical images. These reconstruction methods harm the human body and have a long processing time. Currently, skull structures can be straightforwardly predicted from the head, but a full head shape must be available. Most scanning devices can only capture the face shape. Consequently, a method that can quickly predict the full skull structures from the face is necessary. In this study, a novel face-to-skull prediction procedure is introduced. Given a three-dimensional (3-D) face shape, a skull mesh could be predicted so… More >

  • Open Access

    ARTICLE

    A Feature Selection Method for Software Defect Prediction Based on Improved Beluga Whale Optimization Algorithm

    Shaoming Qiu, Jingjie He, Yan Wang*, Bicong E

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4879-4898, 2025, DOI:10.32604/cmc.2025.061532 - 19 May 2025

    Abstract Software defect prediction (SDP) aims to find a reliable method to predict defects in specific software projects and help software engineers allocate limited resources to release high-quality software products. Software defect prediction can be effectively performed using traditional features, but there are some redundant or irrelevant features in them (the presence or absence of this feature has little effect on the prediction results). These problems can be solved using feature selection. However, existing feature selection methods have shortcomings such as insignificant dimensionality reduction effect and low classification accuracy of the selected optimal feature subset. In… More >

  • Open Access

    ARTICLE

    Short-Term Photovoltaic Power Prediction Based on Multi-Stage Temporal Feature Learning

    Qiang Wang1, Hao Cheng2, Wenrui Zhang2,*, Guangxi Li3, Fan Xu2, Dianhao Chen4, Haixiang Zang4

    Energy Engineering, Vol.122, No.2, pp. 747-764, 2025, DOI:10.32604/ee.2025.059533 - 31 January 2025

    Abstract Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources. However, the fluctuations and intermittency of photovoltaic (PV) power pose challenges for its extensive incorporation into power grids. Thus, enhancing the precision of PV power prediction is particularly important. Although existing studies have made progress in short-term prediction, issues persist, particularly in the underutilization of temporal features and the neglect of correlations between satellite cloud images and PV power data. These factors hinder improvements in PV power prediction performance. To overcome these challenges, this paper… More >

  • Open Access

    ARTICLE

    Short-Term Wind Power Prediction Based on WVMD and Spatio-Temporal Dual-Stream Network

    Yingnan Zhao*, Yuyuan Ruan, Zhen Peng

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 549-566, 2024, DOI:10.32604/cmc.2024.056240 - 15 October 2024

    Abstract As the penetration ratio of wind power in active distribution networks continues to increase, the system exhibits some characteristics such as randomness and volatility. Fast and accurate short-term wind power prediction is essential for algorithms like scheduling and optimization control. Based on the spatio-temporal features of Numerical Weather Prediction (NWP) data, it proposes the WVMD_DSN (Whale Optimization Algorithm, Variational Mode Decomposition, Dual Stream Network) model. The model first applies Pearson correlation coefficient (PCC) to choose some NWP features with strong correlation to wind power to form the feature set. Then, it decomposes the feature set More >

  • Open Access

    ARTICLE

    A Stacking Machine Learning Model for Student Performance Prediction Based on Class Activities in E-Learning

    Mohammad Javad Shayegan*, Rosa Akhtari

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1251-1272, 2024, DOI:10.32604/csse.2024.052587 - 13 September 2024

    Abstract After the spread of COVID-19, e-learning systems have become crucial tools in educational systems worldwide, spanning all levels of education. This widespread use of e-learning platforms has resulted in the accumulation of vast amounts of valuable data, making it an attractive resource for predicting student performance. In this study, we aimed to predict student performance based on the analysis of data collected from the OULAD and Deeds datasets. The stacking method was employed for modeling in this research. The proposed model utilized weak learners, including nearest neighbor, decision tree, random forest, enhanced gradient, simple Bayes, More >

  • Open Access

    ARTICLE

    Gyroscope Dynamic Balance Counterweight Prediction Based on Multi-Head ResGAT Networks

    Wuyang Fan, Shisheng Zhong*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2525-2555, 2024, DOI:10.32604/cmes.2023.046951 - 11 March 2024

    Abstract The dynamic balance assessment during the assembly of the coordinator gyroscope significantly impacts the guidance accuracy of precision-guided equipment. In dynamic balance debugging, reliance on rudimentary counterweight empirical formulas persists, resulting in suboptimal debugging accuracy and an increased repetition rate. To mitigate this challenge, we present a multi-head residual graph attention network (ResGAT) model, designed to predict dynamic balance counterweights with high precision. In this research, we employ graph neural networks for interaction feature extraction from assembly graph data. An SDAE-GPC model is designed for the assembly condition classification to derive graph data inputs for More >

  • Open Access

    ARTICLE

    Cross-Project Software Defect Prediction Based on SMOTE and Deep Canonical Correlation Analysis

    Xin Fan1,2, Shuqing Zhang1,2,*, Kaisheng Wu1,2, Wei Zheng1,2, Yu Ge1,2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1687-1711, 2024, DOI:10.32604/cmc.2023.046187 - 27 February 2024

    Abstract Cross-Project Defect Prediction (CPDP) is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project. However, existing CPDP methods only consider linear correlations between features (indicators) of the source and target projects. These models are not capable of evaluating non-linear correlations between features when they exist, for example, when there are differences in data distributions between the source and target projects. As a result, the performance of such CPDP models is compromised. In this paper, this paper proposes a novel CPDP method based on… More >

Displaying 1-10 on page 1 of 46. Per Page