Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (139)
  • Open Access

    ARTICLE

    Arrhythmia Detection and Classification by Using Modified Recurrent Neural Network

    Ajina Mohamed Ameer*, M. Victor Jose

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1349-1361, 2022, DOI:10.32604/iasc.2022.023924 - 24 March 2022

    Abstract This paper presents a novel approach for arrhythmia detection and classification using modified recurrent neural network. In medicine and analytics, arrhythmia detections is a hot topic, specifically when it comes to cardiac identification. In the research methodology, there are 4 main steps. Acquisition and pre-processing of data, electrocardiogram (ECG) feature extraction utilizing QRS (Quick Response Systems) peak, and ECG signal classification using a Modified Recurrent Neural Network (Modified RNN) for arrhythmia diagnosis. The Massachusetts Institute of Technology-Beth Israel Hospital. (MIT-BIH) Arrhythmia database was used, as well as the image accuracy. Medium filter is used in… More >

  • Open Access

    ARTICLE

    Parkinson's Detection Using RNN-Graph-LSTM with Optimization Based on Speech Signals

    Ahmed S. Almasoud1, Taiseer Abdalla Elfadil Eisa2, Fahd N. Al-Wesabi3,4, Abubakar Elsafi5, Mesfer Al Duhayyim6, Ishfaq Yaseen7, Manar Ahmed Hamza7,*, Abdelwahed Motwakel7

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 871-886, 2022, DOI:10.32604/cmc.2022.024596 - 24 February 2022

    Abstract Early detection of Parkinson's Disease (PD) using the PD patients’ voice changes would avoid the intervention before the identification of physical symptoms. Various machine learning algorithms were developed to detect PD detection. Nevertheless, these ML methods are lack in generalization and reduced classification performance due to subject overlap. To overcome these issues, this proposed work apply graph long short term memory (GLSTM) model to classify the dynamic features of the PD patient speech signal. The proposed classification model has been further improved by implementing the recurrent neural network (RNN) in batch normalization layer of GLSTM… More >

  • Open Access

    ARTICLE

    Optimized LSTM with Dimensionality Reduction Based Gene Expression Data Classification

    S. Jacophine Susmi*

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 1139-1152, 2022, DOI:10.32604/iasc.2022.023865 - 08 February 2022

    Abstract The classification of cancer subtypes is substantial for the diagnosis and treatment of cancer. However, the gene expression data used for cancer subtype classification are high dimensional in nature and small in sample size. In this paper, an efficient dimensionality reduction with optimized long short term memory, algorithm (OLSTM) is used for gene expression data classification. The main three stages of the proposed method are explicitly pre-processing, dimensional reduction, and gene expression data classification. In the pre-processing method, the missing values and redundant values are removed for high-quality data. Following, the dimensional reduction is done More >

  • Open Access

    ARTICLE

    Hyperparameter Tuned Bidirectional Gated Recurrent Neural Network for Weather Forecasting

    S. Manikandan1,*, B. Nagaraj2

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 761-775, 2022, DOI:10.32604/iasc.2022.023398 - 08 February 2022

    Abstract Weather forecasting is primarily related to the prediction of weather conditions that becomes highly important in diverse applications like drought discovery, severe weather forecast, climate monitoring, agriculture, aviation, telecommunication, etc. Data-driven computer modelling with Artificial Neural Networks (ANN) can be used to solve non-linear problems. Presently, Deep Learning (DL) based weather forecasting models can be designed to accomplish reasonable predictive performance. In this aspect, this study presents a Hyper Parameter Tuned Bidirectional Gated Recurrent Neural Network (HPT-BiGRNN) technique for weather forecasting. The HPT-BiGRNN technique aims to utilize the past weather data for training the BiGRNN… More >

  • Open Access

    ARTICLE

    Fake News Classification Using a Fuzzy Convolutional Recurrent Neural Network

    Dheeraj Kumar Dixit*, Amit Bhagat, Dharmendra Dangi

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5733-5750, 2022, DOI:10.32604/cmc.2022.023628 - 14 January 2022

    Abstract In recent years, social media platforms have gained immense popularity. As a result, there has been a tremendous increase in content on social media platforms. This content can be related to an individual's sentiments, thoughts, stories, advertisements, and news, among many other content types. With the recent increase in online content, the importance of identifying fake and real news has increased. Although, there is a lot of work present to detect fake news, a study on Fuzzy CRNN was not explored into this direction. In this work, a system is designed to classify fake and More >

  • Open Access

    ARTICLE

    Automated Facial Expression Recognition and Age Estimation Using Deep Learning

    Syeda Amna Rizwan1, Yazeed Yasin Ghadi2, Ahmad Jalal1, Kibum Kim3,*

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5235-5252, 2022, DOI:10.32604/cmc.2022.023328 - 14 January 2022

    Abstract With the advancement of computer vision techniques in surveillance systems, the need for more proficient, intelligent, and sustainable facial expressions and age recognition is necessary. The main purpose of this study is to develop accurate facial expressions and an age recognition system that is capable of error-free recognition of human expression and age in both indoor and outdoor environments. The proposed system first takes an input image pre-process it and then detects faces in the entire image. After that landmarks localization helps in the formation of synthetic face mask prediction. A novel set of features More >

  • Open Access

    ARTICLE

    Parking Availability Prediction with Coarse-Grained Human Mobility Data

    Aurora Gonzalez-Vidal1, Fernando Terroso-Sáenz2,*, Antonio Skarmeta1

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4355-4375, 2022, DOI:10.32604/cmc.2022.021492 - 14 January 2022

    Abstract Nowadays, the anticipation of parking-space demand is an instrumental service in order to reduce traffic congestion levels in urban spaces. The purpose of our work is to study, design and develop a parking-availability predictor that extracts the knowledge from human mobility data, based on the anonymized human displacements of an urban area, and also from weather conditions. Most of the existing solutions for this prediction take as contextual data the current road-traffic state defined at very high temporal or spatial resolution. However, access to this type of fine-grained location data is usually quite limited due… More >

  • Open Access

    ARTICLE

    A Machine-Learning Framework to Improve Wi-Fi Based Indoorpositioning

    Venkateswari Pichaimani1, K. R. Manjula2,*

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 383-397, 2022, DOI:10.32604/iasc.2022.023105 - 05 January 2022

    Abstract The indoor positioning system comprises portable wireless devices that aid in finding the location of people or objects within the buildings. Identification of the items is through the capacity level of the signal received from various access points (i.e., Wi-Fi routers). The positioning of the devices utilizing some algorithms has drawn more attention from the researchers. Yet, the designed algorithm still has problems for accurate floor planning. So, the accuracy of position estimation with minimum error is made possible by introducing Gaussian Distributive Feature Embedding based Deep Recurrent Perceptive Neural Learning (GDFE-DRPNL), a novel framework.… More >

  • Open Access

    ARTICLE

    Inter-Purchase Time Prediction Based on Deep Learning

    Ling-Jing Kao1, Chih-Chou Chiu1,*, Yu-Fan Lin2, Heong Kam Weng1

    Computer Systems Science and Engineering, Vol.42, No.2, pp. 493-508, 2022, DOI:10.32604/csse.2022.022166 - 04 January 2022

    Abstract Inter-purchase time is a critical factor for predicting customer churn. Improving the prediction accuracy can exploit consumer’s preference and allow businesses to learn about product or pricing plan weak points, operation issues, as well as customer expectations to proactively reduce reasons for churn. Although remarkable progress has been made, classic statistical models are difficult to capture behavioral characteristics in transaction data because transaction data are dependent and short-, medium-, and long-term data are likely to interfere with each other sequentially. Different from literature, this study proposed a hybrid inter-purchase time prediction model for customers of… More >

  • Open Access

    ARTICLE

    Small RNA sequencing revealed aberrant piRNA expression profiles in deciduas of recurrent spontaneous abortion patients

    JIABAO WU1,2,#, XIAOHUA LIU1,2,#, LU HAN1,2, HUA NIE1,2, YUAN TANG1,2, YUNGE TANG1,3, GE SONG1,5, LIXIN ZHENG1,4, WEIBING QIN1,2,*

    BIOCELL, Vol.46, No.4, pp. 1013-1023, 2022, DOI:10.32604/biocell.2022.016744 - 15 December 2021

    Abstract Piwi-interacting RNAs (piRNAs) is a novel class of non-coding RNAs. However, changes in piRNA expression profiles in recurrent spontaneous abortion (RSA) have not yet been investigated. The aim of this study was to identify differentially expressed piRNAs in deciduas of RSA patients. Decidua tissues were collected by curettage from recruited RSA patients and normal early pregnant (NEP) women with their informed consent. Small RNA sequencing was used to evaluate the differences in piRNA expression profiles between RSA and NEP. The present results demonstrated that the counts of total piRNA reads in RSA samples were increased… More >

Displaying 81-90 on page 9 of 139. Per Page