Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (72)
  • Open Access

    ARTICLE

    Enhanced Marathi Speech Recognition Facilitated by Grasshopper Optimisation-Based Recurrent Neural Network

    Ravindra Parshuram Bachate1, Ashok Sharma2, Amar Singh3, Ayman A. Aly4, Abdulaziz H. Alghtani4, Dac-Nhuong Le5,6,*

    Computer Systems Science and Engineering, Vol.43, No.2, pp. 439-454, 2022, DOI:10.32604/csse.2022.024214 - 20 April 2022

    Abstract Communication is a significant part of being human and living in the world. Diverse kinds of languages and their variations are there; thus, one person can speak any language and cannot effectively communicate with one who speaks that language in a different accent. Numerous application fields such as education, mobility, smart systems, security, and health care systems utilize the speech or voice recognition models abundantly. Though, various studies are focused on the Arabic or Asian and English languages by ignoring other significant languages like Marathi that leads to the broader research motivations in regional languages.… More >

  • Open Access

    ARTICLE

    Arrhythmia Detection and Classification by Using Modified Recurrent Neural Network

    Ajina Mohamed Ameer*, M. Victor Jose

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1349-1361, 2022, DOI:10.32604/iasc.2022.023924 - 24 March 2022

    Abstract This paper presents a novel approach for arrhythmia detection and classification using modified recurrent neural network. In medicine and analytics, arrhythmia detections is a hot topic, specifically when it comes to cardiac identification. In the research methodology, there are 4 main steps. Acquisition and pre-processing of data, electrocardiogram (ECG) feature extraction utilizing QRS (Quick Response Systems) peak, and ECG signal classification using a Modified Recurrent Neural Network (Modified RNN) for arrhythmia diagnosis. The Massachusetts Institute of Technology-Beth Israel Hospital. (MIT-BIH) Arrhythmia database was used, as well as the image accuracy. Medium filter is used in… More >

  • Open Access

    ARTICLE

    Parkinson's Detection Using RNN-Graph-LSTM with Optimization Based on Speech Signals

    Ahmed S. Almasoud1, Taiseer Abdalla Elfadil Eisa2, Fahd N. Al-Wesabi3,4, Abubakar Elsafi5, Mesfer Al Duhayyim6, Ishfaq Yaseen7, Manar Ahmed Hamza7,*, Abdelwahed Motwakel7

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 871-886, 2022, DOI:10.32604/cmc.2022.024596 - 24 February 2022

    Abstract Early detection of Parkinson's Disease (PD) using the PD patients’ voice changes would avoid the intervention before the identification of physical symptoms. Various machine learning algorithms were developed to detect PD detection. Nevertheless, these ML methods are lack in generalization and reduced classification performance due to subject overlap. To overcome these issues, this proposed work apply graph long short term memory (GLSTM) model to classify the dynamic features of the PD patient speech signal. The proposed classification model has been further improved by implementing the recurrent neural network (RNN) in batch normalization layer of GLSTM… More >

  • Open Access

    ARTICLE

    Optimized LSTM with Dimensionality Reduction Based Gene Expression Data Classification

    S. Jacophine Susmi*

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 1139-1152, 2022, DOI:10.32604/iasc.2022.023865 - 08 February 2022

    Abstract The classification of cancer subtypes is substantial for the diagnosis and treatment of cancer. However, the gene expression data used for cancer subtype classification are high dimensional in nature and small in sample size. In this paper, an efficient dimensionality reduction with optimized long short term memory, algorithm (OLSTM) is used for gene expression data classification. The main three stages of the proposed method are explicitly pre-processing, dimensional reduction, and gene expression data classification. In the pre-processing method, the missing values and redundant values are removed for high-quality data. Following, the dimensional reduction is done More >

  • Open Access

    ARTICLE

    Hyperparameter Tuned Bidirectional Gated Recurrent Neural Network for Weather Forecasting

    S. Manikandan1,*, B. Nagaraj2

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 761-775, 2022, DOI:10.32604/iasc.2022.023398 - 08 February 2022

    Abstract Weather forecasting is primarily related to the prediction of weather conditions that becomes highly important in diverse applications like drought discovery, severe weather forecast, climate monitoring, agriculture, aviation, telecommunication, etc. Data-driven computer modelling with Artificial Neural Networks (ANN) can be used to solve non-linear problems. Presently, Deep Learning (DL) based weather forecasting models can be designed to accomplish reasonable predictive performance. In this aspect, this study presents a Hyper Parameter Tuned Bidirectional Gated Recurrent Neural Network (HPT-BiGRNN) technique for weather forecasting. The HPT-BiGRNN technique aims to utilize the past weather data for training the BiGRNN… More >

  • Open Access

    ARTICLE

    Fake News Classification Using a Fuzzy Convolutional Recurrent Neural Network

    Dheeraj Kumar Dixit*, Amit Bhagat, Dharmendra Dangi

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5733-5750, 2022, DOI:10.32604/cmc.2022.023628 - 14 January 2022

    Abstract In recent years, social media platforms have gained immense popularity. As a result, there has been a tremendous increase in content on social media platforms. This content can be related to an individual's sentiments, thoughts, stories, advertisements, and news, among many other content types. With the recent increase in online content, the importance of identifying fake and real news has increased. Although, there is a lot of work present to detect fake news, a study on Fuzzy CRNN was not explored into this direction. In this work, a system is designed to classify fake and More >

  • Open Access

    ARTICLE

    Automated Facial Expression Recognition and Age Estimation Using Deep Learning

    Syeda Amna Rizwan1, Yazeed Yasin Ghadi2, Ahmad Jalal1, Kibum Kim3,*

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5235-5252, 2022, DOI:10.32604/cmc.2022.023328 - 14 January 2022

    Abstract With the advancement of computer vision techniques in surveillance systems, the need for more proficient, intelligent, and sustainable facial expressions and age recognition is necessary. The main purpose of this study is to develop accurate facial expressions and an age recognition system that is capable of error-free recognition of human expression and age in both indoor and outdoor environments. The proposed system first takes an input image pre-process it and then detects faces in the entire image. After that landmarks localization helps in the formation of synthetic face mask prediction. A novel set of features More >

  • Open Access

    ARTICLE

    Parking Availability Prediction with Coarse-Grained Human Mobility Data

    Aurora Gonzalez-Vidal1, Fernando Terroso-Sáenz2,*, Antonio Skarmeta1

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4355-4375, 2022, DOI:10.32604/cmc.2022.021492 - 14 January 2022

    Abstract Nowadays, the anticipation of parking-space demand is an instrumental service in order to reduce traffic congestion levels in urban spaces. The purpose of our work is to study, design and develop a parking-availability predictor that extracts the knowledge from human mobility data, based on the anonymized human displacements of an urban area, and also from weather conditions. Most of the existing solutions for this prediction take as contextual data the current road-traffic state defined at very high temporal or spatial resolution. However, access to this type of fine-grained location data is usually quite limited due… More >

  • Open Access

    ARTICLE

    Inter-Purchase Time Prediction Based on Deep Learning

    Ling-Jing Kao1, Chih-Chou Chiu1,*, Yu-Fan Lin2, Heong Kam Weng1

    Computer Systems Science and Engineering, Vol.42, No.2, pp. 493-508, 2022, DOI:10.32604/csse.2022.022166 - 04 January 2022

    Abstract Inter-purchase time is a critical factor for predicting customer churn. Improving the prediction accuracy can exploit consumer’s preference and allow businesses to learn about product or pricing plan weak points, operation issues, as well as customer expectations to proactively reduce reasons for churn. Although remarkable progress has been made, classic statistical models are difficult to capture behavioral characteristics in transaction data because transaction data are dependent and short-, medium-, and long-term data are likely to interfere with each other sequentially. Different from literature, this study proposed a hybrid inter-purchase time prediction model for customers of… More >

  • Open Access

    ARTICLE

    Optimized Fuzzy Enabled Semi-Supervised Intrusion Detection System for Attack Prediction

    Gautham Praveen Ramalingam1, R. Arockia Xavier Annie1, Shobana Gopalakrishnan2,*

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1479-1492, 2022, DOI:10.32604/iasc.2022.022211 - 09 December 2021

    Abstract Detection of intrusion plays an important part in data protection. Intruders will carry out attacks from a compromised user account without being identified. The key technology is the effective detection of sundry threats inside the network. However, process automation is experiencing expanded use of information communication systems, due to high versatility of interoperability and ease off 34 administration. Traditional knowledge technology intrusion detection systems are not completely tailored to process automation. The combined use of fuzziness-based and RNN-IDS is therefore highly suited to high-precision classification, and its efficiency is better compared to that of conventional More >

Displaying 41-50 on page 5 of 72. Per Page