Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (60)
  • Open Access

    ARTICLE

    Stress and Strain Profiles along the Cross-Section of Waste Tire Rubberized Concrete Plates for Airport Pavements

    E. Ferretti1, M.C. Bignozzi2

    CMC-Computers, Materials & Continua, Vol.27, No.3, pp. 231-274, 2012, DOI:10.3970/cmc.2011.027.231

    Abstract In this study, the results of an in-situ experimental program on the performance of concrete taxiways are presented. The experimental program has been undertaken at the Guglielmo Marconi airport of Bologna (Italy). It concerns two portions of the taxiway, one built with plain concrete and one with rubberized concrete. Each portion has been instrumented with strain gauges embedded in concrete for the acquisition of vertical strains. The results of the experimentation are discussed in view of possible applications to the computational analysis of the stress field induced into pavements by aircrafts. More >

  • Open Access

    ARTICLE

    Determination of Working Pressure for Airport Runway Rubber Mark Cleaning Vehicle Based on Numeric Simulation

    Haojun Peng1,*, Zhongwei Wu1, Jinbing Xia1, Bolin Dong1, Yuntao Peng2, Linghe Wang3, Xingxing Ma3, Wei Shen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.3, pp. 799-813, 2019, DOI:10.32604/cmes.2019.06950

    Abstract In this paper, numeric simulations are performed for three dimension models built according to actual surface cleaner in airport runway rubber mark cleaning vehicle using ANSYS FLUENT software on the basis of previous research finished by the authors. After analyzing the simulated flow fields under different standoff distances between nozzle outlet and runway surface and different discharge pressures at nozzle outlet, the relationships of normal stress and shear stress at striking point to outlet pressure and standoff distance are obtained. Finally, the most appropriate discharge pressure at nozzle outlet for the studied surface cleaner model is found, and this will… More >

  • Open Access

    ARTICLE

    Optimization of Nonlinear Vibration Characteristics for Seismic Isolation Rubber

    A. Takahashi1, T. Shibata2, K. Motoyama3, K. Misaji4

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.1, pp. 1-15, 2017, DOI:10.3970/cmes.2017.113.001

    Abstract A method for reducing the damage to a structure caused by an earthquake namely, using laminated rubber for seismic isolation is proposed, and the vibration characteristics of the rubber (which minimizes the seismic response of the structure during an earthquake) is optimized. A method called “Equivalent Linear System using Restoring Force Model of Power Function Type” (PFT-ELS) is applied to nonlinear vibration analysis of the rubber. In that analysis, a building with 15 layers of the laminated rubber is modeled. The seismic response of the building is analyzed, and the usefulness of the laminated rubber is demonstrated by comparing the… More >

  • Open Access

    ARTICLE

    A 3-D Visco-Hyperelastic Constitutive Model for Rubber with Damage for Finite Element Simulation

    Ala Tabiei1, Suraush Khambati2

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.1, pp. 25-45, 2015, DOI:10.3970/cmes.2015.105.025

    Abstract A constitutive model to describe the behavior of rubber from low to high strain rates is presented. For loading, the primary hyperelastic behavior is characterized by the six parameter Ogden’s strain-energy potential of the third order. The rate-dependence is captured by the nonlinear second order BKZ model using another five parameters, having two relaxation times. For unloading, a single parameter model has been presented to define Hysteresis or continuous damage, while Ogden’s two term model has been used to capture Mullin’s effect or discontinuous damage. Lastly, the Feng-Hallquist failure surface dictates the ultimate failure for element deletion. The proposed model… More >

  • Open Access

    ARTICLE

    Parameter Sensitivity and Probabilistic Analysis of the Elastic Homogenized Properties for Rubber Filled Polymers

    Marcin Kamiński1,2, Bernd Lauke2

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.6, pp. 411-440, 2013, DOI:10.3970/cmes.2013.093.411

    Abstract The main aim in this paper is a computational study devoted to the sensitivity gradients and probabilistic moments of the effective elastic parameters for the rubber-filled polymers. The methodology is based on least squares recovery of the polynomial functions relating the effective tensor components and the given input design/random parameters. All numerical experiments are provided with respect to Young’s moduli of the elastomer constituents. Computational analysis is possible thanks to the application of the Response Function Method, which is enriched in our approach with the weighting procedures implemented according to the Dirac-type distributions. The homogenized elasticity tensor components are derived… More >

  • Open Access

    ARTICLE

    Elastic Instability of Pseudo-Elastic Rubber Balloons

    Ren Jiusheng1

    CMC-Computers, Materials & Continua, Vol.7, No.1, pp. 25-32, 2008, DOI:10.3970/cmc.2008.007.025

    Abstract Elastic instability for the inflation and deflation of a thin-walled spherical rubber balloon is examined within the framework of finite pseudo-elasticity. When a spherical rubber balloon is inflated, it is subject to a complex deformation after a pressure maximum has been obtained. One part of the balloon is lightly stretched while the remainder becomes highly stretched. So an aspherical deformation is observed after the initial spherical inflation. A pseudo-elastic strain energy function including a damage variable which may model the loading, unloading and reloading of rubber is used. The balloon is idealized as an elastic membrane and the inflation, deflation… More >

  • Open Access

    ARTICLE

    A Micromechanical Approach to Simulate Rubberlike Materials with Damage

    M. Timmel1, M. Kaliske1, S. Kolling2, R. Mueller3

    CMC-Computers, Materials & Continua, Vol.5, No.3, pp. 161-172, 2007, DOI:10.3970/cmc.2007.005.161

    Abstract A damage approach based on a material model with microstructural evolution is presented. In contrast to phenomenological constitutive laws, the material response is given by mechanisms at the microscale. At first, a micromechanical substructure is chosen, which represents the overall material behaviour. Then the system is described using a micromechanical model. A geometrical modification of the microstructure is allowed to minimize the total energy. Consequently, the global stiffness is reduced. In this context, thermodynamical considerations are based on configurational forces. With the help of the discussed approach, void growth phenomena of materials, which lead to softening behaviour, can be taken… More >

  • Open Access

    ARTICLE

    Mechanics of Elastomer--Shim Laminates

    A. H. Muhr1

    CMC-Computers, Materials & Continua, Vol.5, No.1, pp. 11-30, 2007, DOI:10.3970/cmc.2007.005.011

    Abstract The mechanics of laminates of elastomer and shims of high modulus material are reviewed. Such structures are often built to provide engineering components with specified, and quite different, stiffnesses in different modes of deformation. The shims may either be rigid or flexible, flat or curved, but are usually close to inextensible, being made of a high modulus material such as steel. On the other hand, rubber has an exceptionally low shear modulus, about one thousandth of its bulk modulus, so that shear of the rubber layers and flexure of the high modulus layers (if thin) are the dominant mechanisms of… More >

  • Open Access

    ARTICLE

    Identification of Parameters of a Nonlinear Material Model Considering the Effects of Viscoelasticity and Damage

    Jan Heczko1, Radek Kottner2, Tomáš Kroupa2

    CMC-Computers, Materials & Continua, Vol.33, No.3, pp. 257-273, 2013, DOI:10.3970/cmc.2013.033.257

    Abstract This work deals with mechanical properties of a rubber material that is used in modern tram wheels as a damping element. Nonlinear static response as well as strain softening and hysteresis are captured in the material model that is selected. Method of identification of the model's parameters is developed. The identification method relies on successive minimizations with respect to different sets of parameters. Tests in tension, compression and simple shear are performed. Parameters of the material model are identified based on the tension and compression data, while the shear data are used for validation only. More >

  • Open Access

    ARTICLE

    A Phenomenological Model for Desorption in Polymers

    J.A.Ferreira1,2, P. de Oliveira2, P. da Silva3, D. M. G. Comissiong4

    CMC-Computers, Materials & Continua, Vol.13, No.1, pp. 17-48, 2009, DOI:10.3970/cmc.2009.013.017

    Abstract A phenomenological formulation is adopted to investigate desorption in polymers. The speed of the front is studied and the well-posedness of the general model is analyzed. Numerical simulations illustrating the dynamics of the desorption process described by the proposed model are included. More >

Displaying 51-60 on page 6 of 60. Per Page