Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (72)
  • Open Access

    ARTICLE

    Sustainable Removal of Cu2+ and Pb2+ Ions via Adsorption Using Polyvinyl Alcohol/Neem Leaf Extract/Chitosan (From Shrimp Shells) Composite Films

    Deepti Rekha Sahoo, Trinath Biswal*

    Journal of Polymer Materials, Vol.42, No.3, pp. 811-835, 2025, DOI:10.32604/jpm.2025.067022 - 30 September 2025

    Abstract The purpose of this research work is to determine the removal efficiency of Cu2+ and Pb2+ ions using polyvinyl alcohol/neem leaf extract/chitosan (PVA/NLE/CS) composite films as adsorbent materials from an aqueous medium, with respect to pH, contact time, and adsorbent dosage. The synthesized composite material was characterized using Fourier Transform Infrared (FTIR) spectroscopy, thermogravimetric analysis-Derivative Thermogravimetry (TGA-DTG), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDX). The antibacterial activity and swelling response of the material were studied using suitable methodologies. The FTIR study confirmed the interactions among PVA, chitosan, and… More >

  • Open Access

    ARTICLE

    Improved Meshfree Moving-Kriging Formulation for Free Vibration Analysis of FGM-FGCNTRC Sandwich Shells

    Suppakit Eiadtrong1,2,#, Tan N. Nguyen3,#,*, Mohamed-Ouejdi Belarbi4, Nuttawit Wattanasakulpong1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2819-2848, 2025, DOI:10.32604/cmes.2025.069481 - 30 September 2025

    Abstract An improved meshfree moving-Kriging (MK) formulation for free vibration analysis of functionally graded material-functionally graded carbon nanotube-reinforced composite (FGM-FGCNTRC) sandwich shells is first proposed in this article. The proposed sandwich structure consists of skins of FGM layers and an FGCNTRC core. This structure possesses all the advantages of FGM and FGCNTRC, including high electrical or thermal insulating properties, high fatigue resistance, good corrosion resistance, high stiffness, low density, high strength, and high aspect ratios. Such sandwich structures can be used to replace conventional FGM structures. The present formulation has been established by using an improved More >

  • Open Access

    ARTICLE

    Characterization, In Vitro Dissolution, and Drug Release Kinetics in Hard Capsule Shells Made from Hydrolyzed κ-Carrageenan and Xanthan Gum

    Tri Susanti1,2, Syahnur Haqiqoh1, Pratiwi Pudjiastuti2,*, Siti Wafiroh2,*, Esti Hendradi3, Oktavia Eka Puspita4, Nashriq Jailani5

    Journal of Renewable Materials, Vol.13, No.9, pp. 1841-1857, 2025, DOI:10.32604/jrm.2025.02024-0084 - 22 September 2025

    Abstract This study aims to enhance the mechanical properties, disintegration, and dissolution rates of cross-linked carrageenan (CRG) capsule shells by shortening the long chains of CRG through a hydrolysis reaction with citric acid (CA). The hydrolysis of CRG was carried out using varying concentrations of CA, resulting in hydrolyzed CRG (HCRG). This was followed by cross-linking with xanthan gum (XG) and the addition of sorbitol (SOR) as a plasticizer. The results indicated that the optimal swelling capacity of HCRG-XG/SOR hard-shell capsules occurred at a CA concentration of 0.5%, achieving a maximum swelling rate of 445.39% after… More >

  • Open Access

    ARTICLE

    Calcination Analysis of CaCO3 from Waste Oyster Shells for Partial Cement Replacement

    Bunyamin Bunyamin1,2, Taufiq Saidi3, Sugiarto Sugiarto3,4, Muttaqin Hasan3,*

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1089-1109, 2025, DOI:10.32604/sdhm.2025.066887 - 05 September 2025

    Abstract Aceh in Indonesia is rich in marine resources and abundant fishery products such as oyster. Traditionally, fishermen only harvest oysters and discard the shells, which can cause pollution and environmental contamination. Waste Oyster Shells (WOS) contain a high percentage of calcium carbonate (CaCO3) that experiences thermal decomposition at high temperature, following the reaction CaCO3 → CaO + CO2 (ΔT = 825°C). At temperature > 900°C, dead-burned lime is formed, which severely influences CaO reactivity. However, the optimum temperature for producing high CaO content is still uncertain. Therefore, this study aimed to determine the optimum calcination temperature to… More > Graphic Abstract

    Calcination Analysis of CaCO<sub><b>3</b></sub> from Waste Oyster Shells for Partial Cement Replacement

  • Open Access

    ARTICLE

    Analytical and Numerical Study of the Buckling of Steel Cylindrical Shells Reinforced with Internal and External FRP Layers under Axial Compression

    Maria Tănase1,*, Gennadiy Lvov2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 717-737, 2025, DOI:10.32604/cmes.2025.067891 - 31 July 2025

    Abstract Steel cylindrical shells are widely used in engineering structures due to their high strength-to-weight ratio, but they are vulnerable to buckling under axial loads. To address this limitation, fiber-reinforced polymer (FRP) composites have emerged as promising materials for structural reinforcement. This study investigates the buckling behavior of steel cylindrical shells reinforced with inner and outer layers of polymer composite materials under axial compression. Using analytical and numerical modeling methods, the critical buckling loads for different reinforcement options were evaluated. Two-sided glass fiber reinforced plastic (GFRP) or carbon fiber reinforced plastic (CFRP) coatings, as well as… More >

  • Open Access

    ARTICLE

    Impact of Pyrolysis Parameters on Biochar and Activated Carbon Properties from Cistus ladaniferus for Environmental Applications

    Hammadi El Farissi1,2,*, Anass Choukoud1,2, Bouchaib Manoun3,4, Mohamed El Massaoudi5,6, Abdelmonaem Talhaoui2

    Journal of Renewable Materials, Vol.13, No.6, pp. 1251-1266, 2025, DOI:10.32604/jrm.2025.02025-0004 - 23 June 2025

    Abstract In light of the growing urgency to address environmental degradation and improve carbon sequestration strategies, this study rigorously investigates the potential of Cistus ladaniferus as a viable feedstock for biochar and activated carbon production. The influence of pyrolysis temperature, heating rate and particle size on biochar yield was systematically examined. The results demonstrate that increasing pyrolysis temperature and heating rate significantly reduces biochar yield, while particle size plays a crucial role in thermal degradation and biochar retention. To evaluate the structural and chemical properties of the materials, various characterization techniques were employed, including Fourier-transform infrared spectroscopy… More > Graphic Abstract

    Impact of Pyrolysis Parameters on Biochar and Activated Carbon Properties from <i>Cistus ladaniferus</i> for Environmental Applications

  • Open Access

    REVIEW

    Plates, Beams and Shells Reinforced by CNTs or GPLs: A Review on Their Structural Behavior and Computational Methods

    Mohammad Javad Bayat1, Amin Kalhori2, Kamran Asemi1,*, Masoud Babaei3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1351-1458, 2025, DOI:10.32604/cmes.2025.060222 - 27 January 2025

    Abstract Since the initial observation of carbon nanotubes (CNTs) and graphene platelets (GPLs) in the 1990 and 2000s, the demand for high-performance structural applications and multifunctional materials has driven significant interest in composite structures reinforced with GPLs and CNTs. Incorporating these nanofillers into matrix materials markedly enhances the mechanical properties of the structures. To further improve efficiency and functionality, functionally graded (FG) distributions of CNTs and GPLs have been proposed. This study presents an extensive review of computational approaches developed to predict the global behavior of composite structural components enhanced with CNT and GPL nanofillers. The… More >

  • Open Access

    ARTICLE

    Magneto-Electro-Elastic Analysis of Doubly-Curved Shells: Higher-Order Equivalent Layer-Wise Formulation

    Francesco Tornabene*, Matteo Viscoti, Rossana Dimitri

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1767-1838, 2025, DOI:10.32604/cmes.2024.058842 - 27 January 2025

    Abstract Recent engineering applications increasingly adopt smart materials, whose mechanical responses are sensitive to magnetic and electric fields. In this context, new and computationally efficient modeling strategies are essential to predict the multiphysic behavior of advanced structures accurately. Therefore, the manuscript presents a higher-order formulation for the static analysis of laminated anisotropic magneto-electro-elastic doubly-curved shell structures. The fundamental relations account for the full coupling between the electric field, magnetic field, and mechanical elasticity. The configuration variables are expanded along the thickness direction using a generalized formulation based on the Equivalent Layer-Wise approach. Higher-order polynomials are selected,… More >

  • Open Access

    ARTICLE

    Experimental Study of Selective Batch Bio-Adsorption for the Removal of Dyes in Industrial Textile Effluents

    Zakaria Laggoun1,*, Amel Khalfaoui1, Kerroum Derbal2,*, Amira Fadia Ghomrani3, Abderrezzaq Benalia2,4, Antonio Pizzi5

    Journal of Renewable Materials, Vol.13, No.1, pp. 127-146, 2025, DOI:10.32604/jrm.2024.056970 - 20 January 2025

    Abstract This research aims to study the bio-adsorption process of two dyes, Cibacron Green H3G (CG-H3G) and Terasil Red (TR), in a single system and to bring them closer to the industrial textile discharge by a binary mixture of two dyes (TR+CG-H3G). The Cockle Shell (CS) was used as a natural bio-adsorbent. The characterizations of CS were investigated by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and Brunauer–Emmett–Teller (BET). The adsorption potential of Cockle Shells was tested in two cases (single and binary system) and determined by: contact… More > Graphic Abstract

    Experimental Study of Selective Batch Bio-Adsorption for the Removal of Dyes in Industrial Textile Effluents

  • Open Access

    ARTICLE

    Revolutionizing Biodegradable and Sustainable Materials: Exploring the Synergy of Polylactic Acid Blends with Sea Shells

    Prashanth K P1,*, Rudresh M2, Venkatesh N3, Poornima Gubbi Shivarathri4, Shwetha Rajappa5

    Journal of Renewable Materials, Vol.12, No.12, pp. 2115-2134, 2024, DOI:10.32604/jrm.2024.055437 - 20 December 2024

    Abstract This study explores the mechanical properties of a novel composite material, blending polylactic acid (PLA) with sea shells, through a comprehensive tensile test analysis. The tensile test results offer valuable insights into the material’s behavior under axial loading, shedding light on its strength, stiffness, and deformation characteristics. The results suggest that the incorporation of sea shells decrease the tensile strength of 14.55% and increase the modulus of 27.44% for 15 wt% SSP (sea shell powder) into PLA, emphasizing the reinforcing potential of the mineral-rich sea shell particles. However, a potential trade-off between decreased strength and… More >

Displaying 1-10 on page 1 of 72. Per Page