Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (62)
  • Open Access

    ARTICLE

    Skeleton-Based Action Recognition Using Graph Convolutional Network with Pose Correction and Channel Topology Refinement

    Yuxin Gao1, Xiaodong Duan2,3, Qiguo Dai2,3,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 701-718, 2025, DOI:10.32604/cmc.2025.060137 - 26 March 2025

    Abstract Graph convolutional network (GCN) as an essential tool in human action recognition tasks have achieved excellent performance in previous studies. However, most current skeleton-based action recognition using GCN methods use a shared topology, which cannot flexibly adapt to the diverse correlations between joints under different motion features. The video-shooting angle or the occlusion of the body parts may bring about errors when extracting the human pose coordinates with estimation algorithms. In this work, we propose a novel graph convolutional learning framework, called PCCTR-GCN, which integrates pose correction and channel topology refinement for skeleton-based human action… More >

  • Open Access

    ARTICLE

    Hourglass-GCN for 3D Human Pose Estimation Using Skeleton Structure and View Correlation

    Ange Chen, Chengdong Wu*, Chuanjiang Leng

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 173-191, 2025, DOI:10.32604/cmc.2024.059284 - 03 January 2025

    Abstract Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly, meaning that skeleton structure information is not utilized and multi-view pose information is not completely fused. Moreover, existing graph convolutional operations do not consider the specificity of different joints and different views of pose information when processing skeleton graphs, making the correlation weights between nodes in the graph and their neighborhood nodes shared. Existing Graph Convolutional Networks (GCNs) cannot extract global and deep-level skeleton structure information and view… More >

  • Open Access

    ARTICLE

    Occluded Gait Emotion Recognition Based on Multi-Scale Suppression Graph Convolutional Network

    Yuxiang Zou1, Ning He2,*, Jiwu Sun1, Xunrui Huang1, Wenhua Wang1

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1255-1276, 2025, DOI:10.32604/cmc.2024.055732 - 03 January 2025

    Abstract In recent years, gait-based emotion recognition has been widely applied in the field of computer vision. However, existing gait emotion recognition methods typically rely on complete human skeleton data, and their accuracy significantly declines when the data is occluded. To enhance the accuracy of gait emotion recognition under occlusion, this paper proposes a Multi-scale Suppression Graph Convolutional Network (MS-GCN). The MS-GCN consists of three main components: Joint Interpolation Module (JI Moudle), Multi-scale Temporal Convolution Network (MS-TCN), and Suppression Graph Convolutional Network (SGCN). The JI Module completes the spatially occluded skeletal joints using the (K-Nearest Neighbors)… More >

  • Open Access

    ARTICLE

    Improving Badminton Action Recognition Using Spatio-Temporal Analysis and a Weighted Ensemble Learning Model

    Farida Asriani1,2, Azhari Azhari1,*, Wahyono Wahyono1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3079-3096, 2024, DOI:10.32604/cmc.2024.058193 - 18 November 2024

    Abstract Incredible progress has been made in human action recognition (HAR), significantly impacting computer vision applications in sports analytics. However, identifying dynamic and complex movements in sports like badminton remains challenging due to the need for precise recognition accuracy and better management of complex motion patterns. Deep learning techniques like convolutional neural networks (CNNs), long short-term memory (LSTM), and graph convolutional networks (GCNs) improve recognition in large datasets, while the traditional machine learning methods like SVM (support vector machines), RF (random forest), and LR (logistic regression), combined with handcrafted features and ensemble approaches, perform well but… More >

  • Open Access

    PROCEEDINGS

    Hybrid Artificial Muscle: Enhanced Actuation and Load-Bearing Performance via an Origami Metamaterial Endoskeleton

    Ting Tan1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012670

    Abstract Owing to their compliance, soft robots demonstrate enhanced compatibility with humans and the environment compared with traditional rigid robots. However, ensuring the working effectiveness of artificial muscles that actuate soft robots in confined spaces or underloaded conditions remains a challenge. Drawing inspiration from avian pneumatic bones, we propose the incorporation of a light weight endoskeleton into artificial muscles to augment the mechanical integrity and tackle load-bearing environmental difficulties. We present a soft origami hybrid artificial muscle that features a hollow origami metamaterial interior with a rolled dielectric elastomer exterior. The programmable nonlinear origami metamaterial endoskeleton More >

  • Open Access

    ARTICLE

    Human Interaction Recognition in Surveillance Videos Using Hybrid Deep Learning and Machine Learning Models

    Vesal Khean1, Chomyong Kim2, Sunjoo Ryu2, Awais Khan1, Min Kyung Hong3, Eun Young Kim4, Joungmin Kim5, Yunyoung Nam3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 773-787, 2024, DOI:10.32604/cmc.2024.056767 - 15 October 2024

    Abstract Human Interaction Recognition (HIR) was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements. HIR requires more sophisticated analysis than Human Action Recognition (HAR) since HAR focuses solely on individual activities like walking or running, while HIR involves the interactions between people. This research aims to develop a robust system for recognizing five common human interactions, such as hugging, kicking, pushing, pointing, and no interaction, from video sequences using multiple cameras. In this study, a hybrid Deep… More >

  • Open Access

    PROCEEDINGS

    A Multiscale Dynamic Model of Cell–Substrate Interfaces

    Huiyan Liang1, Wei Fang1, Xiqiao Feng1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012719

    Abstract Cell–extracellular matrix (ECM) interactions play a pivotal role in many functions of cells, for example, sensing, signaling, migration, and gene expression. The spatial-temporal dynamic evolution of cell–substrate adhesions involves complicated mechano-bio-chemical coupling mechanisms of integrin, adaptor and signaling proteins, and the interplay between the cytoskeleton and ECM as well. In this paper, we establish a multiscale dynamic model of cell–substrate interfaces considering intermolecular force transmission pathways, i.e., intra- and extra-cellular bond dynamics, and mechanochemical coupling regulations. To illustrate its applications, this model is used to reproduce several adhesion-related experimental phenomena of cells, including substrate rigidity… More >

  • Open Access

    ARTICLE

    BCCLR: A Skeleton-Based Action Recognition with Graph Convolutional Network Combining Behavior Dependence and Context Clues

    Yunhe Wang1, Yuxin Xia2, Shuai Liu2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4489-4507, 2024, DOI:10.32604/cmc.2024.048813 - 26 March 2024

    Abstract In recent years, skeleton-based action recognition has made great achievements in Computer Vision. A graph convolutional network (GCN) is effective for action recognition, modelling the human skeleton as a spatio-temporal graph. Most GCNs define the graph topology by physical relations of the human joints. However, this predefined graph ignores the spatial relationship between non-adjacent joint pairs in special actions and the behavior dependence between joint pairs, resulting in a low recognition rate for specific actions with implicit correlation between joint pairs. In addition, existing methods ignore the trend correlation between adjacent frames within an action… More >

  • Open Access

    ARTICLE

    Japanese Sign Language Recognition by Combining Joint Skeleton-Based Handcrafted and Pixel-Based Deep Learning Features with Machine Learning Classification

    Jungpil Shin1,*, Md. Al Mehedi Hasan2, Abu Saleh Musa Miah1, Kota Suzuki1, Koki Hirooka1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2605-2625, 2024, DOI:10.32604/cmes.2023.046334 - 11 March 2024

    Abstract Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing communities. In Japan, approximately 360,000 individuals with hearing and speech disabilities rely on Japanese Sign Language (JSL) for communication. However, existing JSL recognition systems have faced significant performance limitations due to inherent complexities. In response to these challenges, we present a novel JSL recognition system that employs a strategic fusion approach, combining joint skeleton-based handcrafted features and pixel-based deep learning features. Our system incorporates two distinct streams: the first stream extracts crucial handcrafted features, emphasizing the capture of hand and body… More >

  • Open Access

    ARTICLE

    Action Recognition for Multiview Skeleton 3D Data Using NTURGB + D Dataset

    Rosepreet Kaur Bhogal1,*, V. Devendran2

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2759-2772, 2023, DOI:10.32604/csse.2023.034862 - 09 November 2023

    Abstract Human activity recognition is a recent area of research for researchers. Activity recognition has many applications in smart homes to observe and track toddlers or oldsters for their safety, monitor indoor and outdoor activities, develop Tele immersion systems, or detect abnormal activity recognition. Three dimensions (3D) skeleton data is robust and somehow view-invariant. Due to this, it is one of the popular choices for human action recognition. This paper proposed using a transversal tree from 3D skeleton data to represent videos in a sequence. Further proposed two neural networks: convolutional neural network recurrent neural network_1… More >

Displaying 1-10 on page 1 of 62. Per Page