Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (66)
  • Open Access

    ARTICLE

    Flatness Control with Cascaded Filtered High-Gain and Disturbance Observers for Rehabilitation Exoskeletons

    Sahbi Boubaker1,2,*, Salim Hadj Said3, Souad Kamel1, Habib Dimassi3

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5703-5721, 2025, DOI:10.32604/cmc.2025.069047 - 23 October 2025

    Abstract Accurate trajectory tracking in lower-limb exoskeletons is challenged by the nonlinear, time-varying dynamics of human-robot interaction, limited sensor availability, and unknown external disturbances. This study proposes a novel control strategy that combines flatness-based control with two cascaded observers: a high-gain observer to estimate unmeasured joint velocities, and a nonlinear disturbance observer to reconstruct external torque disturbances in real time. These estimates are integrated into the control law to enable robust, state-feedback-based trajectory tracking. The approach is validated through simulation scenarios involving partial state measurements and abrupt external torque perturbations, reflecting realistic rehabilitation conditions. Results confirm More >

  • Open Access

    ARTICLE

    Radial Basis Function Neural Network Adaptive Controller for Wearable Upper-Limb Exoskeleton with Disturbance Observer

    Mohammad Soleimani Amiri1, Sahbi Boubaker2,3,*, Rizauddin Ramli4,*, Souad Kamel2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3113-3133, 2025, DOI:10.32604/cmes.2025.069167 - 30 September 2025

    Abstract Disability is defined as a condition that makes it difficult for a person to perform certain vital activities. In recent years, the integration of the concepts of intelligence in solving various problems for disabled persons has become more frequent. However, controlling an exoskeleton for rehabilitation presents challenges due to their non-linear characteristics and external disturbances caused by the structure itself or the patient wearing the exoskeleton. To remedy these problems, this paper presents a novel adaptive control strategy for upper-limb rehabilitation exoskeletons, addressing the challenges of nonlinear dynamics and external disturbances. The proposed controller integrated… More >

  • Open Access

    ARTICLE

    IoT-Based Real-Time Medical-Related Human Activity Recognition Using Skeletons and Multi-Stage Deep Learning for Healthcare

    Subrata Kumer Paul1,2, Abu Saleh Musa Miah3,4, Rakhi Rani Paul1,2, Md. Ekramul Hamid2, Jungpil Shin4,*, Md Abdur Rahim5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2513-2530, 2025, DOI:10.32604/cmc.2025.063563 - 03 July 2025

    Abstract The Internet of Things (IoT) and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients. Recognizing Medical-Related Human Activities (MRHA) is pivotal for healthcare systems, particularly for identifying actions critical to patient well-being. However, challenges such as high computational demands, low accuracy, and limited adaptability persist in Human Motion Recognition (HMR). While some studies have integrated HMR with IoT for real-time healthcare applications, limited research has focused on recognizing MRHA as essential for effective patient monitoring. This study proposes a novel HMR method tailored for MRHA detection, leveraging multi-stage deep… More >

  • Open Access

    REVIEW

    Integrin Alpha8 Beta1 (81): An In-Depth Review of an Overlooked RGD-Binding Receptor

    Iman Ezzat, Marisa Zallocchi*

    BIOCELL, Vol.49, No.5, pp. 789-811, 2025, DOI:10.32604/biocell.2025.062325 - 27 May 2025

    Abstract Integrins are heterodimeric transmembrane receptors that mediate bidirectional interactions between the intracellular cytoskeletal array and the extracellular matrix. These interactions are critical in tissue development and function by regulating gene expression and sustaining tissue architecture. In humans, the integrin family is composed of 18 alpha (α) and 8 beta (β) subunits, constituting 24 distinct αβ combinations. Based on their structure and ligand-binding properties, only a subset of integrins, 8 out of 24, recognizes the arginine-glycine-aspartate (RGD) tripeptide motif in the native ligand. One of the major RGD binding integrins is integrin alpha 8 beta 1 More >

  • Open Access

    ARTICLE

    Skeleton-Based Action Recognition Using Graph Convolutional Network with Pose Correction and Channel Topology Refinement

    Yuxin Gao1, Xiaodong Duan2,3, Qiguo Dai2,3,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 701-718, 2025, DOI:10.32604/cmc.2025.060137 - 26 March 2025

    Abstract Graph convolutional network (GCN) as an essential tool in human action recognition tasks have achieved excellent performance in previous studies. However, most current skeleton-based action recognition using GCN methods use a shared topology, which cannot flexibly adapt to the diverse correlations between joints under different motion features. The video-shooting angle or the occlusion of the body parts may bring about errors when extracting the human pose coordinates with estimation algorithms. In this work, we propose a novel graph convolutional learning framework, called PCCTR-GCN, which integrates pose correction and channel topology refinement for skeleton-based human action… More >

  • Open Access

    ARTICLE

    Hourglass-GCN for 3D Human Pose Estimation Using Skeleton Structure and View Correlation

    Ange Chen, Chengdong Wu*, Chuanjiang Leng

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 173-191, 2025, DOI:10.32604/cmc.2024.059284 - 03 January 2025

    Abstract Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly, meaning that skeleton structure information is not utilized and multi-view pose information is not completely fused. Moreover, existing graph convolutional operations do not consider the specificity of different joints and different views of pose information when processing skeleton graphs, making the correlation weights between nodes in the graph and their neighborhood nodes shared. Existing Graph Convolutional Networks (GCNs) cannot extract global and deep-level skeleton structure information and view… More >

  • Open Access

    ARTICLE

    Occluded Gait Emotion Recognition Based on Multi-Scale Suppression Graph Convolutional Network

    Yuxiang Zou1, Ning He2,*, Jiwu Sun1, Xunrui Huang1, Wenhua Wang1

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1255-1276, 2025, DOI:10.32604/cmc.2024.055732 - 03 January 2025

    Abstract In recent years, gait-based emotion recognition has been widely applied in the field of computer vision. However, existing gait emotion recognition methods typically rely on complete human skeleton data, and their accuracy significantly declines when the data is occluded. To enhance the accuracy of gait emotion recognition under occlusion, this paper proposes a Multi-scale Suppression Graph Convolutional Network (MS-GCN). The MS-GCN consists of three main components: Joint Interpolation Module (JI Moudle), Multi-scale Temporal Convolution Network (MS-TCN), and Suppression Graph Convolutional Network (SGCN). The JI Module completes the spatially occluded skeletal joints using the (K-Nearest Neighbors)… More >

  • Open Access

    ARTICLE

    Improving Badminton Action Recognition Using Spatio-Temporal Analysis and a Weighted Ensemble Learning Model

    Farida Asriani1,2, Azhari Azhari1,*, Wahyono Wahyono1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3079-3096, 2024, DOI:10.32604/cmc.2024.058193 - 18 November 2024

    Abstract Incredible progress has been made in human action recognition (HAR), significantly impacting computer vision applications in sports analytics. However, identifying dynamic and complex movements in sports like badminton remains challenging due to the need for precise recognition accuracy and better management of complex motion patterns. Deep learning techniques like convolutional neural networks (CNNs), long short-term memory (LSTM), and graph convolutional networks (GCNs) improve recognition in large datasets, while the traditional machine learning methods like SVM (support vector machines), RF (random forest), and LR (logistic regression), combined with handcrafted features and ensemble approaches, perform well but… More >

  • Open Access

    PROCEEDINGS

    Hybrid Artificial Muscle: Enhanced Actuation and Load-Bearing Performance via an Origami Metamaterial Endoskeleton

    Ting Tan1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012670

    Abstract Owing to their compliance, soft robots demonstrate enhanced compatibility with humans and the environment compared with traditional rigid robots. However, ensuring the working effectiveness of artificial muscles that actuate soft robots in confined spaces or underloaded conditions remains a challenge. Drawing inspiration from avian pneumatic bones, we propose the incorporation of a light weight endoskeleton into artificial muscles to augment the mechanical integrity and tackle load-bearing environmental difficulties. We present a soft origami hybrid artificial muscle that features a hollow origami metamaterial interior with a rolled dielectric elastomer exterior. The programmable nonlinear origami metamaterial endoskeleton More >

  • Open Access

    ARTICLE

    Human Interaction Recognition in Surveillance Videos Using Hybrid Deep Learning and Machine Learning Models

    Vesal Khean1, Chomyong Kim2, Sunjoo Ryu2, Awais Khan1, Min Kyung Hong3, Eun Young Kim4, Joungmin Kim5, Yunyoung Nam3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 773-787, 2024, DOI:10.32604/cmc.2024.056767 - 15 October 2024

    Abstract Human Interaction Recognition (HIR) was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements. HIR requires more sophisticated analysis than Human Action Recognition (HAR) since HAR focuses solely on individual activities like walking or running, while HIR involves the interactions between people. This research aims to develop a robust system for recognizing five common human interactions, such as hugging, kicking, pushing, pointing, and no interaction, from video sequences using multiple cameras. In this study, a hybrid Deep… More >

Displaying 1-10 on page 1 of 66. Per Page