Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    A Calculation Method of Double Strength Reduction for Layered Slope Based on the Reduction of Water Content Intensity

    Feng Shen1,*, Yang Zhao1, Bingyi Li1, Kai Wu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 221-243, 2024, DOI:10.32604/cmes.2023.029159

    Abstract The calculation of the factor of safety (FOS) is an important means of slope evaluation. This paper proposed an improved double strength reduction method (DRM) to analyze the safety of layered slopes. The physical properties of different soil layers of the slopes are different, so the single coefficient strength reduction method (SRM) is not enough to reflect the actual critical state of the slopes. Considering that the water content of the soil in the natural state is the main factor for the strength of the soil, the attenuation law of shear strength of clayey soil changing with water content is… More >

  • Open Access

    ARTICLE

    NUMERICALLY INVESTIGATING THE EFFECTS OF FEED WATER PREHEATING TANK DESIGN ON THE PERFORMANCE OF SINGLE SLOPE SOLAR STILL

    Zahraa A. Faisal*, Hassanain Ghani Hameed, Dhafer Manea H. Al-Shamkhee

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-9, 2021, DOI:10.5098/hmt.17.22

    Abstract One of the common water desalination apparatuses in freshwater regimes is Single Slope Solar Still (SSSS). This paper numerically investigated the heat transfer processes that took place inside the still. Also, implementing an optimization process to explore the best sustainable feed water preheating tank design. Comsol Software package (v 5.4) was utilized to develop and validate the 3D Mathematical model. The investigation included comparing four different tank designs namely are sphere, half-sphere, cone, and flat plate. In addition, the influence of altering the volume of the tank has been considered. The study revealed that the half-sphere design with a volume… More >

  • Open Access

    ARTICLE

    Improved Prediction of Slope Stability under Static and Dynamic Conditions Using Tree-Based Models

    Feezan Ahmad1, Xiaowei Tang1, Jilei Hu2,*, Mahmood Ahmad3,4, Behrouz Gordan5

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 455-487, 2023, DOI:10.32604/cmes.2023.025993

    Abstract Slope stability prediction plays a significant role in landslide disaster prevention and mitigation. This paper’s reduced error pruning (REP) tree and random tree (RT) models are developed for slope stability evaluation and meeting the high precision and rapidity requirements in slope engineering. The data set of this study includes five parameters, namely slope height, slope angle, cohesion, internal friction angle, and peak ground acceleration. The available data is split into two categories: training (75%) and test (25%) sets. The output of the RT and REP tree models is evaluated using performance measures including accuracy (Acc), Matthews correlation coefficient (Mcc), precision… More >

  • Open Access

    ARTICLE

    Assessment of the Elastic-Wave Well Treatment in Oil-Bearing Clastic and Carbonate Reservoirs

    Vladimir Poplygin1,*, Chengzhi Qi2, Mikhail Guzev3, Evgenii Kozhevnikov1, Artem Kunitskikh1, Evgenii Riabokon1, Mikhail Turbakov1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1495-1505, 2023, DOI:10.32604/fdmp.2023.022335

    Abstract A set of techniques for well treatment aimed to enhance oil recovery are considered in the present study. These are based on the application of elastic waves of various types (dilation-wave, vibro-wave, or other acoustically induced effects). In such a context, a new technique is proposed to predict the effectiveness of the elastic-wave well treatment using the rank distribution according to Zipf’s law. It is revealed that, when the results of elastic wave well treatments are analyzed, groups of wells exploiting various geological deposits can differ in terms of their slope coefficients and free members. As the slope coefficient increases,… More >

  • Open Access

    REVIEW

    Developments and Applications of Neutrosophic Theory in Civil Engineering Fields: A Review

    Zhenhan Zhang, Jun Ye*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 887-916, 2023, DOI:10.32604/cmes.2023.022961

    Abstract Neutrosophic theory can effectively and reasonably express indeterminate, inconsistent, and incomplete information. Since Smarandache proposed the neutrosophic theory in 1998, neutrosophic theory and related research have been developed and applied to many important fields. Indeterminacy and fuzziness are one of the main research issues in the field of civil engineering. Therefore, the neutrosophic theory is very suitable for modeling and applications of civil engineering fields. This review paper mainly describes the recent developments and applications of neutrosophic theory in four important research areas of civil engineering: the neutrosophic decision-making theory and applied methods, the neutrosophic evaluation methods and applications of… More >

  • Open Access

    ARTICLE

    Effect of Inclined Tension Crack on Rock Slope Stability by SSR Technique

    Ch. Venkat Ramana*, Niranjan Ramchandra Thote, Arun Kumar Singh

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1205-1214, 2023, DOI:10.32604/iasc.2023.031838

    Abstract The tension cracks and joints in rock or soil slopes affect their failure stability. Prediction of rock or soil slope failure is one of the most challenging tasks in the earth sciences. The actual slopes consist of inhomogeneous materials, complex morphology, and erratic joints. Most studies concerning the failure of rock slopes primarily focused on determining Factor of Safety (FoS) and Critical Slip Surface (CSS). In this article, the effect of inclined tension crack on a rock slope failure is studied numerically with Shear Strength Reduction Factor (SRF) method. An inclined Tension Crack (TC) influences the magnitude and location of… More >

  • Open Access

    ARTICLE

    Slope Collapse Detection Method Based on Deep Learning Technology

    Xindai An1, Di Wu1,2,*, Xiangwen Xie1, Kefeng Song1

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1091-1103, 2023, DOI:10.32604/cmes.2022.020670

    Abstract So far, slope collapse detection mainly depends on manpower, which has the following drawbacks: (1) low reliability, (2) high risk of human safe, (3) high labor cost. To improve the efficiency and reduce the human investment of slope collapse detection, this paper proposes an intelligent detection method based on deep learning technology for the task. In this method, we first use the deep learning-based image segmentation technology to find the slope area from the captured scene image. Then the foreground motion detection method is used for detecting the motion of the slope area. Finally, we design a lightweight convolutional neural… More >

  • Open Access

    ARTICLE

    Numerical Analysis of the Tunnel-Train-Air Interaction Problem in a Tunnel with a Double-Hat Oblique Hood

    Zongfa Zhang1, Minglu Zhang1,*, Xinbiao Xiao2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 345-359, 2023, DOI:10.32604/fdmp.2022.020233

    Abstract The tunnel-train-air interaction problem is investigated by using a numerical method able to provide relevant information about pressure fluctuations, aerodynamic drag characteristics and the “piston wind” effect. The method relies on a RNG k-ε two-equation turbulence model. It is shown that although reducing the oblique slope can alleviate the pressure gradient resulting from initial compression waves at the tunnel entrance, the pressure fluctuations in the tunnel are barely affected; however, a large reduction of micro-pressure wave amplitudes is found outside the tunnel. In comparison to the case where no tunnel hood is present, the amplitudes of micro-pressure waves at 40… More > Graphic Abstract

    Numerical Analysis of the Tunnel-Train-Air Interaction Problem in a Tunnel with a Double-Hat Oblique Hood

  • Open Access

    REVIEW

    Research Progress of Eco-Friendly Portland Cement Porous Concrete: A Review

    Xin Cai1,2, Fan Li1, Xingwen Guo2,*, Ren Li3, Yanan Zhang1, Qinghui Liu2, Minmin Jiang4

    Journal of Renewable Materials, Vol.11, No.1, pp. 103-130, 2023, DOI:10.32604/jrm.2022.022684

    Abstract With the great impetus of energy conservation and emission reduction policies in various countries, the proposal of concepts such as “Sponge City” and “Eco-City”, and the emphasis on restoration and governance of ecological environment day by day, portland cement porous concrete (PCPC), as a novel building material, has attracted more and more attention from scientific researchers and engineers. PCPC possesses the peculiar pore structure, which owns numerous functions like river embankment protection, vegetation greening as well as air-cleaning, and has been of wide application in different engineering fields. This paper reviews the salient properties of PCPC, detailedly expounds the research… More > Graphic Abstract

    Research Progress of Eco-Friendly Portland Cement Porous Concrete: A Review

  • Open Access

    ARTICLE

    Hysteresis of Dam Slope Safety Factor under Water Level Fluctuations Based on the LEM Coupled with FEM Method

    Guodong Liu1,2,*, Zhijun Zhou1, Shiqiang Xu1, Wenjing Mi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.2, pp. 351-375, 2022, DOI:10.32604/cmes.2022.020335

    Abstract Water level variations have caused numerous dam slope collapse disasters around the world, illustrating the large influence of water level fluctuations on dam slopes. The required indoor tests were conducted and a numerical model of an actual earth-filled dam was constructed to investigate the influences of the water level fluctuation rate and the hysteresis of the soil–water characteristic curve (SWCC) on the stability of the upstream dam slope. The results revealed that the free surface in the dam body for the desorption SWCC during water level fluctuations was higher than that for the adsorption SWCC, which would be more evident… More >

Displaying 1-10 on page 1 of 32. Per Page