Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (369)
  • Open Access

    ARTICLE

    Synthesis of Water-Soluble Chitosan From Squid Pens Waste for Capsule Shell Materials

    Malinda Syifa Yusharani, Stenley, Harmami, Ita Ulfin, Suprapto Suprapto, Yatim Lailun Ni’mah*

    Journal of Renewable Materials, Vol.7, No.7, pp. 643-653, 2019, DOI:10.32604/jrm.2019.04185

    Abstract Water-Soluble Chitosan (WSC) has been sucessfuly synthesized from squid pens waste. The synthesis of chitosan from chitin was carried out by optimization of deacetylation temperature and time. Chitin was obtained from squid pens waste by demineralization and deproteinization process. HCl 7% was used for demineralization and NaOH 10% at 60°C was applied for deproteinization process. Deacetylation reaction was carried out at varied temperatures i.e., 60°C, 70°C, 80°C, 90°C and 100°C in NaOH 50% solution for 10 hours. Deacetylation reaction time were varied for 2 hours, 4 hours, 6 hours, 8 hours, and 10 hours. The crude chitosan obtained then reacted… More >

  • Open Access

    ARTICLE

    Feasibility of Using Wood Chips to Regulate Relative Humidity Inside a Building: A Numerical Study

    Dimitri Bigot1,*, Cyril Ott1, Stéphane Guichard1, Bruno Malet-Damour1

    Journal of Renewable Materials, Vol.7, No.6, pp. 505-516, 2019, DOI:10.32604/jrm.2019.04019

    Abstract The use of bio-based materials in buildings has become more and more significant last years. In most of the cases, their health properties and natural provenance have made them a great solution to face global climate warming and the new policies to reduce building energy consumption. In many thermal problems, bio-based materials can allow to optimize the building thermal behavior according to its energy consumption and inside comfort conditions. So it is when they are used as an insulation material in the building. However, it is not the case in this paper. In fact, the bio-based matter is rather used… More >

  • Open Access

    ABSTRACT

    Identification of Dimensions and Position of Tumor Region on the Basis of Skin Surface Temperature Using the Gradient Method Coupled with the Multiple Reciprocity BEM

    Ewa Majchrzak2 1, Marek Paruch2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.1, No.1, pp. 7-14, 2007, DOI:10.3970/icces.2007.001.007

    Abstract This article has no abstract. More >

  • Open Access

    ABSTRACT

    Analytical solution for estimation of temperature-dependent material properties of metals using modified morse potential

    Kuo-Ning Chiang1, Chan-Yen Chou2, Chung-Jung Wu2, Chao-Jen Huang2, Ming-Chih Yew2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.9, No.3, pp. 130-142, 2009, DOI:10.3970/icces.2009.009.130

    Abstract An atomic-level analytical solution, together with a modified Morse potential, has been developed to estimate temperature-dependent thermal expansion coefficients (CTE) and elastic characteristics of bulk metals. In this study, inter-atomic forces are considered as a set of anharmonic oscillator networks which can be described by Morse potential, while the material properties can be defined by these inter-atomic forces; when temperature increases, the vibration of the anharmonic oscillator causes the phenomenon of temperature-dependent material properties. The results of analysis showed that the original Morse potential can give a reasonable prediction of the thermal expansion coefficients and elastic constants of metals at… More >

  • Open Access

    ARTICLE

    PHBV Crystallization under Injection Molding Conditions: Influence of Packing Pressure and Mold Temperature

    G. El hajj Sleiman1, G. Colomines1, R. Deterre1, I. Petit1, E. Leroy2, S. Belhabib1,*

    Journal of Renewable Materials, Vol.6, No.3, pp. 270-276, 2018, DOI:10.7569/JRM.2017.634179

    Abstract Poly(3-hydroxy butyrate)-co-(3-hydroxy valerate) (PHBV) is a biobased and biodegradable polyester. This semicrystalline bioplastic could be a good candidate for the replacement of some commodity plastics derived from oil. However, the control of the conditions of its processing in order to obtain optimal properties of the finished products remains a current research subject. The objective of this work is to better understand the crystallization under injection molding conditions by inline measurements during the process. We focused on the influence of two key processing parameters, namely, mold temperature and packing pressure. The modeling of inline temperature measurements allowed an inverse estimation of… More >

  • Open Access

    ARTICLE

    Influence of the Extraction Temperature on the Properties of Biopolymers Obtained from Tannery Wastes

    M.A. Pérez-Limiñana*, M.M. Sánchez-Navarro, M.J. Escoto-Palacios, F. Arán-Aís, C. Orgilés-Barceló

    Journal of Renewable Materials, Vol.4, No.1, pp. 3-8, 2016, DOI:10.7569/JRM.2015.634119

    Abstract The tanning i ndustry generates very large quantities of industrial wastes. The advancement of European policy and legislation protecting the environment has prompted the transformation of tannery solid waste materials into valuable co-products, useful to be recycled or employed in other industries. The objective of this work is to obtain gelatine from tannery wastes, in order to reuse it as natural microencapsulating agent in the production of active materials with functional properties. Concretely, this paper focuses on the influence of the extraction temperature on gelatine properties and its microencapsulating ability. An alternative enzymatic pre-treatment to the conventional alkaline one is… More >

  • Open Access

    ARTICLE

    3-D Temperature Fields in Laminated Shells Subjected to Thermo-Loads

    Hai Qian1,*, Ding Zhou2, Bin Gu1, Rathnayaka Mudiyanselage D. M. S.3

    Structural Durability & Health Monitoring, Vol.12, No.4, pp. 281-298, 2018, DOI:10.32604/sdhm.2018.04618

    Abstract The temperature fields in the laminated shells were studied, including open cylindrical shells and cylindrical shells, according to the thermal theory. Analytical solution of the temperature in the shells with the known temperature on the surfaces was present. The thinning layer approach was introduced to simplify the three-dimensional heat conduction equation. Firstly, the layered shell was divided into N thinner layers. The governing equation was simplified by replacing the variable r by r0 in the center line of every thin layer. The general solutions of temperature satisfying the simplified three-dimensional governing equation in single-layered shell were deduced in the cylindrical… More >

  • Open Access

    ARTICLE

    Theoretical Prediction and Experimental Testing of Mechanical Properties for 3D Printed Silk Fibroin-Type II Collagen Scaffolds for Cartilage Regeneration

    Lilan Gao1,2,*, Qingxian Yuan1,2, Ruixin Li3,*, Lei Chen1,2, Chunqiu Zhang1,2, Xizheng Zhang1,2

    Molecular & Cellular Biomechanics, Vol.15, No.2, pp. 85-98, 2018, DOI: 10.3970/mcb.2018.00329

    Abstract Silk fibroin-typeⅡcollagen scaffold was made by 3D printing technique and freeze-drying method, and its mechanical properties were studied by experiments and theoretical prediction. The results show that the three-dimensional silk fibroin-typeⅡ collagen scaffold has good porosity and water absorption, which is (89.3%+3.26%) and (824.09%+93.05%), respectively. With the given strain value, the stress of scaffold decreases rapidly firstly and then tends to be stable during the stress relaxation. Both initial and instantaneous stresses increase with increase of applied strain value. The creep strains of scaffold with different stress levels show the two stages: the rapidly increasing stage and the second stable… More >

  • Open Access

    ARTICLE

    Analysis on Simulation of Quasi-Steady Molecular Statics Nanocutting Model and Calculation of Temperature Rise During Orthogonal Cutting of Single-Crystal Copper

    Zone-Ching Lin1, Ying-Chih Hsu1

    CMC-Computers, Materials & Continua, Vol.27, No.2, pp. 143-178, 2012, DOI:10.32604/cmc.2012.027.143

    Abstract This paper uses quasi-steady molecular statics method to carry out simulation of nanoscale orthogonal cutting of single-crystal copper workpiece by the diamond tools with different edge shapes. Based on the simulation results, this paper analyzes the cutting force, equivalent stress and strain, and temperature field. For the three-dimensional quasi-steady molecular statics nanocutting model used by this paper, when the cutting tool moves on a workpiece, displacement of atoms is caused due to the effects of potential on each other. After a small distance that each atom moves is directly solved by the calculated trajectory of each atom, the concept of… More >

  • Open Access

    ARTICLE

    Temperature-dependent Thermodynamic Behaviors of Carbon Fullerene Molecules at Atmospheric Pressure

    Wen-Hwa Chen1,2, Chun-Hung Wu1, Hsien-Chie Cheng3,4,5

    CMC-Computers, Materials & Continua, Vol.25, No.3, pp. 195-214, 2011, DOI:10.3970/cmc.2011.025.195

    Abstract The study aims at investigating the linear and volumetric thermal expansion coefficients (CTEs) at temperature below the Debye temperature and phase transformation behaviors at atmospheric pressure of carbon fullerenes, i.e., C60, C70 and C80, through a modified Nosé-Hoover (NH) thermostat method incorporated with molecular dynamics (MD) simulation. The calculated results are compared with those obtained from the standard NH and "massive" NHC (MNHC) thermostats and also with the literature experimental and theoretical data. Results show that at temperature below the Debye temperature, the CTEs of the fullerene molecules would significantly decrease with a decreasing temperature and tend to become negative… More >

Displaying 311-320 on page 32 of 369. Per Page