Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (370)
  • Open Access

    ARTICLE

    TWO DIFFERENT APPROACHES FOR ANALYSING HEAT TRANSFER IN A POWER-LAW FLUID FLOW BETWEEN PARALLEL PLATES

    Fábio A. Caldasa,*, Paulo M. Coelhob,†

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-8, 2017, DOI:10.5098/hmt.8.32

    Abstract In this paper, Nusselt numbers for a power-law fluid in a fully developed laminar flow between parallel plates with constant, and different, wall heat fluxes in the presence of dissipation effects are presented. The Nusselt numbers values were obtained following two different approaches. One is the “classical” approach, based on a single bulk temperature, and this approach is used in this work to obtain for the first time generic analytical expressions for Nusselt numbers. In the new approach, different bulk temperatures are used for each Nu′ determination, one bulk temperature for each side of the location of the temperature profile… More >

  • Open Access

    ARTICLE

    NEW SIMILARITY SOLUTION OF MICROPOLAR FLUID FLOW PROBLEM OVER AN UHSPR IN THE PRESENCE OF QUARTIC KIND OF AUTOCATALYTIC CHEMICAL REACTION

    O. K. Koriko, I. L. Animasaun*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-13, 2017, DOI:10.5098/hmt.8.26

    Abstract The motion of air (i.e fluid) in which tiny particle rotates past a pointed surface of a rocket (as in space science), over a bonnet of a car and past a pointed surface of an aircraft is of important to experts in all these fields. Geometrically, all the domains of fluid flow in all these cases can be referred to as the upper horizontal surface of a paraboloid of revolution (uhspr). Meanwhile, the solution of the corresponding partial differential equation is an open question due to unavailability of suitable similarity variable to non-dimensionalize the angular momentum equation. This article unravels… More >

  • Open Access

    ARTICLE

    MRT-LBM SIMULATION OF NATURAL CONVECTION IN A RAYLEIGH-BENARD CAVITY WITH LINEARLY VARYING TEMPERATURES ON THE SIDES: APPLICATION TO A MICROPOLAR FLUID

    A. El Mansouria,b, M. Hasnaouia,*, A. Amahmida , Y. Dahania , M. Alouaha , S. Hasnaouia , R. Khaoulaa , M. Ouahasa, R. Bennacerb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-14, 2017, DOI:10.5098/hmt.9.28

    Abstract A two-dimensional numerical simulation is conducted to study natural convection flow and heat transfer characteristics in a square cavity filled with a micropolar fluid. The lower and upper walls of the cavity are respectively subject to isothermal heating and cooling while the temperatures of both vertical sides decrease linearly in the upwards direction. The Lattice-Boltzmann Method (LBM), with the multi-relaxation time (MRT) scheme for the collision process, is used to solve the problem with the objective to assess the ability and efficiency of this numerical method to describe the micropolar fluid behavior under the effect of the imposed thermal boundary… More >

  • Open Access

    ARTICLE

    EFFECT OF HALL CURRENT ON MHD NATURAL CONVECTION HEAT AND MASS TRANSFER FLOW OF ROTATING FLUID PAST A VERTICAL PLATE WITH RAMPED WALL TEMPERATURE

    Gauri Shanker Seth*, Arnab Bhattacharyya, Rajat Tripathi

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-12, 2017, DOI:10.5098/hmt.9.21

    Abstract A study on unsteady MHD natural convection flow of an optically thin, heat radiating, incompressible, viscous, chemically reactive, temperature dependent heat absorbing and electrically conducting fluid past an exponentially accelerated infinite vertical plate having ramped temperature, embedded in a porous medium is carried out, considering the effects of Hall current and rotation. Governing equations are non-dimensionalized and Laplace Transform Technique is used to find the exact solutions for non-dimensional velocity, temperature and concentration fields. The quantities of physical interest i.e. shear stress at the plate, rate of heat and mass transfers at the plate are also derived. Numerical results for… More >

  • Open Access

    ARTICLE

    EFFECT OF TEMPERATURE ON WATER TRANSPORTATION IN NANOCHANNEL

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-4, 2017, DOI:10.5098/hmt.9.16

    Abstract The flow factor approach model was used to study the effect of temperature on water transportation in a nano slit pore flow driven by the pressure. The influences of the temperature on the density and viscosity of water and on the water-wall interaction were considered. The results show that enhancing the temperature of water significantly improves water transportation in nanochannel, especially when the channel height is so low that the water non-continuum effect is significant. The mechanism of this temperature effect is that the temperature increase not only appreciably reduces the water viscosity but also considerably alleviates the water non-continuum… More >

  • Open Access

    ARTICLE

    INVESTIGATION ON THE EFFECT OF INJECTION PRESSURES ON THE SPRAY CHARACTERISTICS FOR DIETHYL ETHER AND DIESEL FUEL AT DIFFERENT CHAMBER TEMPERATURES

    Vijayakumar Thulasi, R. Thundil Karuppa Raj*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-9, 2018, DOI:10.5098/hmt.10.33

    Abstract Diethyl ether is one of the potential alternative fuels for the high speed compression ignition engines that can replace the existing neat diesel fuel. It is well known that the combustion characteristic of a compression ignition engine is highly influenced by the fuel spray structure formed during the injection process. In this paper the spray structure formation for the diethyl ether fuel is studied numerically, using the discrete phase model and it is compared with the neat diesel fuel. The spray is investigated in a constant volume chamber maintained at 30 bar pressure. The fuel is injected into the chamber… More >

  • Open Access

    ARTICLE

    THE STUDY ON CALCULATION METHOD OF TEMPERATURE DISTRIBUTION OF TESTED TUBE FOR WAX DEPOSITION EXPERIMENTAL LOOP

    Rongge Xiaoa,* , Wenbo Jina,*, Zhen Tianb , Yuntong Shec , Li Wanga

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-7, 2018, DOI:10.5098/hmt.10.12

    Abstract The loop experiment device plays an important role in the study of wax deposition, and the calculation of the temperature distribution of the test section is the key to establish the wax deposition model. In the conditions of the wax deposition was not formed and constant wall temperature of the tube, the energy balance equation is solved by using separation of variables and combining the Kummer equation (S-K method), the distribution law of temperature in the test section is obtained, and the solution results was compared with Svendsen method, the difference between the results obtained by the two methods and… More >

  • Open Access

    ARTICLE

    DESIGN AND SIMULATION OF PARALLEL MICROHEATER

    Shailendra K. Tiwaria,* , Somashekara Bhata , Krishna K. Mahatob , Bharath B. Manjunathc

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.9

    Abstract This paper presents the design and simulation of a thin film microheater. This can have promising applications in bio-medical analysis, explosive detection, gas sensing, and micro-thrusters. An approach is presented to enhance the thermal uniformity of parallel microheater. The modeling of microheater is done using glass as a substrate material. The analysis is carried out with different resistive material for the heater. To study the response of the microheater to the different supply voltage, substrate thickness, and time interval, finite element simulation is carried out with commercial FEM analysis tool- COMSOL Multiphysics 5.2a. The proposed design in Model 1 have… More >

  • Open Access

    ARTICLE

    MHD VISCOUS CASSONFLUID FLOW IN THE PRESENCE OF A TEMPERATURE GRADIENT DEPENDENT HEAT SINK WITH PRESCRIBED HEAT AND MASS FLUX

    S. Palaniammal1 , K. Saritha2,*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-10, 2018, DOI:10.5098/hmt.10.1

    Abstract This paper investigates heat and mass transfer of a MHD Casson fluid over a permeable stretching surface in the presence of a temperature gradient heat sink. The effects of viscous dissipation, thermal radiation and chemical reaction are also taken into the consideration. The relevant similarity transformations are used to reduce the governing equations into a system of nonlinear ordinary differential equations and then solved analytically. The influence of various physical parameters on the velocity, temperature, concentration, skin friction coefficient, Nusselt and Sherwood numbers are investigated. The numerical results of skin friction factor, Nusselt and Sherwood number are compared with the… More >

  • Open Access

    ARTICLE

    SUPERSONIC CONDENSATION CHARACTERISTICS OF CO2 IN NATURAL GAS UNDER DIFFERENT TEMPERATURE CONDITIONS

    Huan Zhenga,*, Yuliang Mab , Huaping Meic , Xiaohong Xua , Xiguang Chend , Xunchen Caoe

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-6, 2018, DOI:10.5098/hmt.11.34

    Abstract The supersonic separator has proved to be an effective method to condense and separate CO2 from natural gas, and the inlet temperature plays a vital role on condensation characteristics of CO2 in the supersonic separator due to the instability temperature of wellhead natural gas. In this paper, the physical and mathematical models for the supersonic condensation process of CO2 in the natural gas were established on the basis of CO2 droplet surface tension, nucleation and growth model. The flow and condensation parameters were investigated under different temperature conditions. The results show that when the inlet gas pressure is 8.0 MPa,… More >

Displaying 51-60 on page 6 of 370. Per Page