Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (369)
  • Open Access

    ARTICLE

    The Effect of Organ Temperature on Total Yield of Transplanted and Direct-Seeded Rice (Oryza sativa L.)

    Ziwei Li1,2, Lifen Huang1,2, Zhongyang Huo1,2, Min Jiang1,2,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.11, pp. 2999-3019, 2023, DOI:10.32604/phyton.2023.030627

    Abstract The canopy temperature of rice is an important index that directly reflects the growth and physiological state of rice, and affects the yield of rice plants to a great extent. The correlation between the temperatures of different rice organs and canopy in different growth stages and the grain yield is complex. The stability and universality of these correlations must be verified. We conducted a pot experiment using two rice varieties and two temperature treatments (high temperature treatment was carried out at the beginning of heading stage for 10 days). We measured rice organ temperature during seven stages of growth using… More >

  • Open Access

    ARTICLE

    Osmotic Regulation, Antioxidant Enzyme Activities and Photosynthetic Characteristics of Tree Peony ( Andr.) in Response to High-Temperature Stress

    Zhipeng Sheng, Jiasong Meng, Jun Tao*, Daqiu Zhao*

    Phyton-International Journal of Experimental Botany, Vol.92, No.11, pp. 3133-3147, 2023, DOI:10.32604/phyton.2023.028818

    Abstract

    Tree peony (Paeonia suffruticosa Andr.) is a traditional Chinese flower, which prefers cool weather. However, high temperature in summer in the middle and lower reaches of the Yangtze River restricts its growth and development. In this study, osmotic regulation, antioxidant enzyme activities, and photosynthetic characteristics of tree peony in response to high-temperature stress were investigated. The results showed that high-temperature stress had destroyed the cell membrane, manifested as the increased relative electrical conductivity and malondialdehyde content. Moreover, high-temperature stress led to excessive accumulation of reactive oxygen species, thereby, activating antioxidant enzyme activities. Also, photosynthetic parameters and chlorophyll fluorescence parameters directly… More >

  • Open Access

    ARTICLE

    Calculation of Mass Concrete Temperature Containing Cooling Water Pipe Based on Substructure and Iteration Algorithm

    Heng Zhang1,2, Chao Su2,*, Zhizhong Song1, Zhenzhong Shen1,2, Huiguang Lei3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 813-826, 2024, DOI:10.32604/cmes.2023.030055

    Abstract Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering. One such equation is the Fourier equation, which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete. One important measure for temperature control in mass concrete is the use of cooling water pipes. However, the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method. Moreover, the temperature of the water in the cooling pipe needs to… More >

  • Open Access

    REVIEW

    Study of Intelligent Approaches to Identify Impact of Environmental Temperature on Ultrasonic GWs Based SHM: A Review

    Saqlain Abbas1,2,*, Zulkarnain Abbas3, Xiaotong Tu4, Yanping Zhu2

    Journal on Artificial Intelligence, Vol.5, pp. 43-56, 2023, DOI:10.32604/jai.2023.040948

    Abstract Structural health monitoring (SHM) is considered an effective approach to analyze the efficient working of several mechanical components. For this purpose, ultrasonic guided waves can cover long-distance and assess large infrastructures in just a single test using a small number of transducers. However, the working of the SHM mechanism can be affected by some sources of variations (i.e., environmental). To improve the final results of ultrasonic guided wave inspections, it is necessary to highlight and attenuate these environmental variations. The loading parameters, temperature and humidity have been recognized as the core environmental sources of variations that affect the SHM sensing… More >

  • Open Access

    ARTICLE

    Development of a High-Temperature Thixotropic Cement Slurry System

    Ping Lv1, Jiufei Liu2, Mengran Xu3,*, Hui Tian3,4, Huajie Liu3, Yuhuan Bu3, Zhuang Cai3, Junfeng Qu5

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2907-2921, 2023, DOI:10.32604/fdmp.2023.029304

    Abstract Cementing carbonate reservoirs is generally a difficult task. The so-called thixotropic cement slurry has gained considerable attention in this regard as it can help to fix some notable problems. More precisely, it can easily fill the leakage layer; moreover, its gelling strength can grow rapidly when pumping stops, thereby increasing the resistance to gas channeling, effectively preventing this undesired phenomenon in many cases. High-temperature thixotropic cement slurry systems, however, are still in an early stage of development and additional research is needed to make them a viable option. In the present study, using a self-developed composite high-temperature thixotropic additive as… More >

  • Open Access

    ARTICLE

    Fluid-Structure Coupled Analysis of the Transient Thermal Stress in an Exhaust Manifold

    Liang Yi1,*, Wen Gang1, Nenggui Pan2, Wangui Wang1, Shengshuai Mo1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2777-2790, 2023, DOI:10.32604/fdmp.2023.021907

    Abstract The development of thermal stress in the exhaust manifold of a gasoline engine is considered. The problem is addresses in the frame of a combined approach where fluid and structure are coupled using the GT-POWER and STAR-CCM+ software. First, the external characteristic curve of the engine is compared with a one-dimensional simulation model, then the parameters of the model are modified until the curve matches the available experimental values. GT-POWER is then used to transfer the inlet boundary data under transient conditions to STAR-CCM+ in real-time. The temperature profiles of the inner and outer walls of the exhaust manifold are… More >

  • Open Access

    PROCEEDINGS

    Test and Simulation Researches on G550 Cold-Formed Steel at High Temperature and High Strain Rate

    Haocheng Jiang1, Jue Zhu2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09586

    Abstract The tests of dynamic mechanical properties of materials at high temperature and high strain rate has always been a difficult issue [1]. In order to perform the dynamic mechanical properties of G550 cold-formed steel at high temperature and high strain rate, a set of Hopkinson Tension test device which can synchronize with high temperature control is developed for material test [2]. The stress-strain curves obtained from the tests were used to explore the influence of temperature and strain rate on the rheological properties of material by combining micro-analysis. The results show that G550 cold-formed steel has obvious strain rate hardening… More >

  • Open Access

    PROCEEDINGS

    Multiscale Modeling for Thermomenchanical Fatigue Damage Analysis and Life Prediction for Woven Ceramic Matrix Composites at Elevated Temperature

    Zhengmao Yang1,*, Junjie Yang2, Yang Chen3, Fulei Jing4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09229

    Abstract Woven ceramic matrix composites (CMCs), exhibiting excellent thermomechanical properties at high temperatures, are promising as alternative materials to the conventional nickel-based superalloys in the hot section components of aero-engines. Therefore, understanding and predicting the lifetime of CMCs is critical. Fatigue prediction of woven CMCs currently involves long-term and costly testing. A feasible alternative is to use predictive modelling based on a deep understanding of the damage mechanisms. Therefore, this study develops a multiscale analysis modelling method for predicting the fatigue life of CMC materials at high temperature by investigating the thermomechanical fatigue damage evolution. To represent the global thermomechanical properties… More >

  • Open Access

    PROCEEDINGS

    Thermal-Mechanical Buckling and Postbuckling Analysis of Thin-Walled Structures Using a Reduced Order Method

    Ke Liang1,*, Zhen Yin1, Zheng Li1, Jiaqi Mu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-2, 2023, DOI:10.32604/icces.2023.09020

    Abstract Thermal-mechanical buckling has become one of the major failure modes of thin-walled structures which suffer from the high temperature service environment. These structures, such as plates and shells, are commonly involved in many branches of engineering, especially for the aerospace structures. Thermalmechanical buckling analysis plays an important role for lightweight design of aircrafts and launch vehicles, which significantly influences the load-carrying capability of the structure. Geometrical nonlinearities should be well considered to determine an accurate value of the critical buckling temperature/load as well as the postbuckling response.
    In this work, a reduced-order method is proposed for geometrically nonlinear thermal-mechanical analysis… More >

  • Open Access

    PROCEEDINGS

    Study on Dynamic Mechanical Properties of Q245R Steel at High Temperature

    Zhiyuan Liu1, Jue Zhu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09798

    Abstract In order to study the dynamic mechanical properties at high temperature and high strain rate [1] of Q245R steel after corrosion, the electrochemical accelerated corrosion test by constant current method and the high strain rate tensile test at high temperature [2] by High Temperature Synchronous Hopkinson Tensile test device were carried out. The test results show that Q245R steel has obvious strain rate strengthening effect and temperature softening effect, and under certain conditions, temperature becomes the main factor affecting the material properties. In order to consider the heat treatment and corrosion effects, the traditional Johnson-Cook [3-4] constitutive equation was improved,… More >

Displaying 31-40 on page 4 of 369. Per Page