Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (75)
  • Open Access

    ARTICLE

    Tensile Failure Characterization of Glass/Epoxy Composites using Acoustic Emission RMS Data

    K. KRISHNAMOORTHYa,*, N. PRABHUb

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 215-226, 2023, DOI:10.32381/JPM.2023.40.3-4.7

    Abstract The acoustic emission monitoring with artificial neural networks predicts the ultimate strength of glass/epoxy composite laminates using Acoustic Emission Data. The ultimate loads of all the specimens were used to characterise the emission of hits during failure modes. The six layered glass fiber laminates were prepared (in woven mat form) with epoxy as the binding medium by hand lay-up technique. At room temperature, with a pressure of 30 kg/cm2, the laminates were cured. The laminates of standard dimensions as per ASTM D3039 for the tensile test were cut from the lamina. The Acoustic Emission (AE) test More >

  • Open Access

    ARTICLE

    Machine Learning Design of Aluminum-Lithium Alloys with High Strength

    Hongxia Wang1,2, Zhiqiang Duan2, Qingwei Guo2, Yongmei Zhang1,2,*, Yuhong Zhao2,3,4,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1393-1409, 2023, DOI:10.32604/cmc.2023.045871 - 29 November 2023

    Abstract Due to the large unexplored compositional space, long development cycle, and high cost of traditional trial-anderror experiments, designing high strength aluminum-lithium alloys is a great challenge. This work establishes a performance-oriented machine learning design strategy for aluminum-lithium alloys to simplify and shorten the development cycle. The calculation results indicate that radial basis function (RBF) neural networks exhibit better predictive ability than back propagation (BP) neural networks. The RBF neural network predicted tensile and yield strengths with determination coefficients of 0.90 and 0.96, root mean square errors of 30.68 and 25.30, and mean absolute errors of More >

  • Open Access

    PROCEEDINGS

    Tensile Properties and Microscopic Mechanism of Carbon Nanotube/Graphene Foam Materials

    Shuai Wang1,*, Lihong Liang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09163

    Abstract Compared to pure carbon nanotube (CNT) foam (CF) and pure graphene foam (GrF), the CNT/graphene composite foam show enhanced mechanical properties, using coarse-grained molecular dynamics method, the tensile and compressive properties and corresponding deformation mechanism of several typical CNT/graphene composite foams were studied. The CNT coating could enhance the bending resistance of graphene, based on the CNT-coated graphene flakes, the CNT-coated graphene foam (CCGF) is constructed, which shows better compressive modulus due to the enhanced bending resistance of CNT-coated graphene flakes compared to graphene in pure GrF [1]. CNT can enhance the mechanical properties of… More >

  • Open Access

    PROCEEDINGS

    Measuring the Tensile Strength Degradations of Mineral Grain Interfaces (MGIs) in the Granite After Thermo-hydro-mechanical (THM) Coupling

    Mengyi Li1, Zhijun Wu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09829

    Abstract Buried in depth for decades of years, granite in the deep geological repository will be subjected to extremely complex effects of thermo-hydro-mechanical (THM) treatment, and the tensile strengths of mineral grain interfaces (MGIs) are inevitably impacted by the THM treatment [1, 2]. Originated by the failure modes of granite after THM treatment, the tensile strength of MGI plays an important role in determining the macro mechanical properties of THM-treated granite [3, 4]. However, the accurate characterization of the tensile strength degradations of MGIs with THM treatment is still lacking. In this study, the varied tensile… More >

  • Open Access

    ARTICLE

    Optical and Mechanical Properties of Ramie Fiber/Epoxy Resin Transparent Composites

    Chunhua Liu1, Dongfang Zou1, Qinqin Huang1, Shang Li2, Xia Zheng1, Xingong Li1,*

    Journal of Renewable Materials, Vol.11, No.10, pp. 3613-3624, 2023, DOI:10.32604/jrm.2023.028111 - 10 August 2023

    Abstract The residual resources of ramie fiber-based textile products were used as raw materials. Ramie fiber felt (RF) was modified by NaClO2 aqueous solution and then impregnated with water-based epoxy resin (WER). RF/WER transparent composite materials were prepared by lamination hot pressing process. The composite materials’color difference, transmittance, haze, density, water absorption, and mechanical properties were determined to assess the effects of NaClO2 treatment and the number of ramie fiber layers on the properties of the prepared composites. The results showed significantly improved optical and mechanical properties of the RF/WER transparent composites after NaClO2 treatment. With the increase More > Graphic Abstract

    Optical and Mechanical Properties of Ramie Fiber/Epoxy Resin Transparent Composites

  • Open Access

    ARTICLE

    Experimental Study on the Compressive Strength of Concrete with Different Wheat Straw Treatment Techniques

    Liang Wen1,2,*, Changhong Yan3, Yehui Shi4, Zhenxiang Wang4, Gang Liu4, Wei Shi4

    Journal of Renewable Materials, Vol.11, No.10, pp. 3681-3692, 2023, DOI:10.32604/jrm.2023.027671 - 10 August 2023

    Abstract The treatment of wheat straw is very difficult, and its utilization rate is very low; accumulation causes air pollution and even fire. To make full use of wheat straw resources, we examined how using different physical and chemical methods to treat the wheat straw which can improve its strength abilities, or enhance the activity of wheat straw ash. In terms of concrete additives, it can reduce the amount of cement used. In this paper, we found that alkali treatment can significantly improve the tensile strength of wheat straw fiber, but polyvinyl alcohol treatment has no… More > Graphic Abstract

    Experimental Study on the Compressive Strength of Concrete with Different Wheat Straw Treatment Techniques

  • Open Access

    ARTICLE

    The Characteristics of Glued Tensile Shear Strength Constituted of Wood Cut by CO2 Laser

    Fatemeh Rezaei1,2,*, Milan Gaff1,3,4,*, Róbert Nemeth5, Jerzy Smardzewski6, Peter Niemz7, Haitao Li8,9, Anil Kumar Sethy1,10, Luigi Todaro11, Gourav Kamboj1, Sumanta Das1, Roberto Corleto1, Gianluca Ditommaso1, Miklós Bak5

    Journal of Renewable Materials, Vol.11, No.8, pp. 3277-3296, 2023, DOI:10.32604/jrm.2023.028352 - 26 June 2023

    Abstract The performance of engineered wood products is highly associated with proper bonding and an efficient cutting method. This paper investigates the influence of CO2 laser cutting on the wetting properties, the modified chemical component of the laser-cut surface, and the strength and adhesive penetration near the bondline. Beechwood is cut by the laser with varying processing parameters, cutting speeds, gas pressures, and focal point positions. The laser-cut samples were divided into two groups, sanded and non-sanded samples. Polyvinyl acetate adhesive (PVAc) was used to bond the groups of laser-cut samples. After assembly with cold pressing, the… More >

  • Open Access

    ARTICLE

    Assessment of the Mechanical Properties of Carbon-Fiber Heating Cables in Snow and Ice Melting Applications

    Zhiyong Yang1, Jiacheng Zhang1, Henglin Xiao1,2, Zhi Chen1,*, Tian Bao1, Yin Liu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2267-2288, 2023, DOI:10.32604/fdmp.2023.028652 - 16 May 2023

    Abstract The use of carbon-fiber heating cables (CFHC) to achieve effective melting of snow and ice deposited on roads is a method used worldwide. In this study, tensile and compressive tests have been conducted to analyze the mechanical properties of the CFHC and assess whether the maximum tensile and compressive strengths can meet the pavement design specifications. In order to study the aging produced by multiple cycles of heating and cooling, in particular, the CFHC was repeatedly heated in a cold chamber with an ambient temperature ranging between −20°C and +40°C. Moreover, to evaluate how the More > Graphic Abstract

    Assessment of the Mechanical Properties of Carbon-Fiber Heating Cables in Snow and Ice Melting Applications

  • Open Access

    ARTICLE

    Tensile Properties and Prediction Model of Recombinant Bamboo at Different Temperatures

    Kunpeng Zhao, Yang Wei*, Si Chen, Kang Zhao, Mingmin Ding

    Journal of Renewable Materials, Vol.11, No.6, pp. 2695-2712, 2023, DOI:10.32604/jrm.2023.025711 - 27 April 2023

    Abstract The destruction of recombinant bamboo depends on many factors, and the complex ambient temperature is an important factor affecting its basic mechanical properties. To investigate the failure mechanism and stress–strain relationship of recombinant bamboo at different temperatures, eighteen tensile specimens of recombinant bamboo were tested. The results showed that with increasing ambient temperature, the typical failure modes of recombinant bamboo were flush fracture, toothed failure, and serrated failure. The ultimate tensile strength, ultimate strain and elastic modulus of recombinant bamboo decreased with increasing temperature, and the ultimate tensile stress decreased from 154.07 to 96.55 MPa, a decrease More > Graphic Abstract

    Tensile Properties and Prediction Model of Recombinant Bamboo at Different Temperatures

  • Open Access

    ARTICLE

    Tensile Properties and Wear Resistance of Mg Alloy Containing High Si as Implant Materials

    Mengqi Cong*, Yang Zhang, Yunlong Zhang, Xiao Liu, Yalin Lu, Xiaoping Li

    Journal of Renewable Materials, Vol.11, No.4, pp. 1977-1989, 2023, DOI:10.32604/jrm.2023.023849 - 01 December 2022

    Abstract Magnesium alloy has been considered as one of the third-generation biomaterials for the regeneration and support of functional bone tissue. As a regeneration implant material with great potential applications, in-situ Mg2Si phase reinforced Mg-6Zn cast alloy was comprehensively studied and expected to possess excellent mechanical properties via the refining and modifying of Mg2Si reinforcements. The present study demonstrates that the primary and eutectic Mg2Si phase can be greatly modified by the yttrium (Y) addition. The size of the primary Mg2Si phases can be reduced to ~20 μm with an addition of 0.5 wt.% Y. This phenomenon is… More > Graphic Abstract

    Tensile Properties and Wear Resistance of Mg Alloy Containing High Si as Implant Materials

Displaying 11-20 on page 2 of 75. Per Page