Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    Tunable Hydrophilicity of Poly(ethyl lactate acrylate-coacrylic acid)

    M. Purushothaman1, P. Santhana Gopala Krishnan1,2,*, S. K. Nayak1,2

    Journal of Renewable Materials, Vol.3, No.4, pp. 292-301, 2015, DOI:10.7569/JRM.2015.634114

    Abstract Four copolymers of poly(ethyl lactate acrylate-co-acrylic acid) were prepared by the solution polymerization technique by varying the comonomer content from 0.2 to 0.8 mole percent. The copolymers were characterized by FT-IR, 1H-NMR and proton decoupled 13C-NMR spectroscopic techniques. The reactivity ratio of ethyl lactate acrylate (ELA) and acrylic acid (AA) was calculated using the Fineman-Ross method and the values were found to be 0.101 and 0.186, respectively, indicating the formation of an alternating copolymer. From the wide-angle X-ray diffraction studies (WAXD), the average molecular interchain spacing () was calculated from the 2θ value of amorphous halo at about 20°. The… More >

  • Open Access

    ARTICLE

    Influence of Beta-Cyclodextrin Functionalized Tin Phenylphosphonate on the Thermal Stability and Flame Retardancy of Epoxy Composites

    Yongming Chen1,2,#, Shuai Huang1,#, Han Zhao1, Ru Yang2, Yining He1, Tianyu Zhao1, Yunlong Zhang1, Qinghong Kong1,*, Shasha Sun3,*, Junhao Zhang3

    Journal of Renewable Materials, Vol.10, No.12, pp. 3119-3130, 2022, DOI:10.32604/jrm.2022.019576

    Abstract To enhance the thermal stability and flame retardancy of epoxy resin (EP), beta-cyclodextrin (β-CD) is successfully introduced into the layered tin phenylphosphonate (SnPP), which is incorporated into EP matrix for preparing EP/β-CD@SnPP composites. The results indicate that the addition of β-CD@SnPP obviously improve the thermal stability and residual yield of EP composites at higher temperature. When the amount of β-CD@SnPP is only 4 wt%, EP/4β-CD@SnPP composites pass V-1 rating, and LOI value is up to 30.8%. Meanwhile, β- CD@SnPP effectively suppress the heat release and reduce the smoke production of EP/β-CD@SnPP composites in combustion, and the peak heat release rate… More >

  • Open Access

    REVIEW

    Recent Advances in Flame Retardant Bio-Based Benzoxazine Resins

    Hongliang Ding, Xin Wang*, Lei Song, Yuan Hu

    Journal of Renewable Materials, Vol.10, No.4, pp. 871-895, 2022, DOI:10.32604/jrm.2022.018150

    Abstract Benzoxazines have attracted wide attention from academics all over the world because of their unique properties. However, most of the production and preparation of benzoxazine resins depends on petroleum resources now, especially bisphenol A-based benzoxazine. Therefore, owing to the environmental impacts, the development of bio-based benzoxazines is gaining more and more interest to substitute petroleum-based benzoxazines. Similar to petroleum-based benzoxazines, most of bio-based benzoxazines suffer from flammability. Thus, it is necessary to endow bio-based benzoxazines with outstanding flame retardancy. The purpose of this review is to summarize the latest advance in flame retardant bio-based benzoxazines. First, three methods of the… More > Graphic Abstract

    Recent Advances in Flame Retardant Bio-Based Benzoxazine Resins

  • Open Access

    ARTICLE

    Sawdust Short Fiber Reinforced Epoxidized Natural Rubber: Insight on Its Mechanical, Physical, and Thermal Aspects

    O. S. Dahham1, N. Z. Noriman1,2,*, H. Jaya1, R. Hamzah1, M. U. Umar2,3, I. Johari4

    Journal of Renewable Materials, Vol.8, No.12, pp. 1633-1645, 2020, DOI:10.32604/jrm.2020.011377

    Abstract In this work, Epoxidized natural rubber/sawdust short fiber (ENR-50/ SD) composites at different fiber content (5, 10, 15 and 20 phr) and size (fine size at 60–100 μm and coarse size at 10–20 mm) were prepared using two-roll mill and electrical-hydraulic hot press machine respectively. Curing characteristics, water uptake, tensile, morphological, physical, and thermal properties of the composites were investigated. Results indicated that the scorch time and cure time became shorter whereas torque improved as SD content increase. Though the decline of tensile strength and elongation at break values, modulus, hardness and crosslinking density have shown enhancements with the increasing… More >

  • Open Access

    ARTICLE

    Analysis of the Mechanism and Effectiveness of Lignin in Improving the High-Temperature Thermal Stability of Asphalt

    Cheng Cheng1,2,*, Weiwei Sun2, Bo Hu3, Guixiang Tao2, Chao Peng2, Yanjuan Tian4, Shujuan Wu4,5

    Journal of Renewable Materials, Vol.8, No.10, pp. 1243-1255, 2020, DOI:10.32604/jrm.2020.012054

    Abstract The use of lignin, which is a by-product of the pulp and paper industry, in the development of asphalt binders would contribute to waste reduction, providing environmental, economic, and social benefits. In this study, samples of lignin-modified asphalt binder samples with different content of lignin (3%, 6%, 9%, 12%, and 15%) and unmodified asphalt (control) were tested using Fourier transform infrared spectroscopy (FTIR), dynamic shear rheometer (DSR), and thermogravimetry. The mechanism and effectiveness of lignin in improving the thermal stability of asphalt at high temperatures were analyzed. The FTIR analysis shows that no new characteristic absorption peak is seen in… More >

  • Open Access

    Examination of a Biobased Carbon Nucleating Agent on Poly(lactic acid) Crystallization

    Michael R. Snowdon1,2, Amar K. Mohanty1,2, Manjusri Misra1,2*

    Journal of Renewable Materials, Vol.5, Suppl.1, pp. 94-105, 2017, DOI:10.7569/JRM.2017.634134

    Abstract This article assesses the performance of a biobased carbon as a nucleator using common techniques to stimulate poly(lactic acid) crystallization and enhance the thermal stability of PLA during injection molding. The combination of a biodegradable plasticizer, poly(ethylene glycol) (PEG), along with biobased carbon-rich pyrolyzed biomass char residue and an industrially available microcrystalline talc, were tested for nucleating agent capabilities at additions of 10 wt%. Differential scanning calorimetry (DSC) data demonstrated that the inclusion of the plasticizer could increase the PLA crystalline content with further improvements when nucleating agent was present. With a higher mold temperature, the PLA crystallinity surpassed 40%… More >

  • Open Access

    ARTICLE

    Synthesis of a Fully Biobased Polyfunctional Vinyl Oligomer and Their UV Cured Films Prepared via Thiol-ene Coupling

    Changqing Fu1,2, Jiahui Wang1,2, Lie Chen1,2, Liang Shen1,2,*

    Journal of Renewable Materials, Vol.7, No.8, pp. 795-805, 2019, DOI:10.32604/jrm.2019.07503

    Abstract In this paper, a fully bio-based vinyl oligomer with high functionalities was successfully prepared from rapeseed oil by three modification steps: epoxidation of rapeseed oil, solvent-free and catalyst-free ring opening by 10-undecylenic acid followed by esterification with 10-undecenoyl chloride. Then, the renewable polymers were prepared by photo-polymerization of these modified vegetable oils with typical thiol monomers: pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tris (3-mercaptopropionate) and 1,2-ethanedithiol. The synthesis of the vinyl oligomer was monitored by nuclear magnetic resonance and Fourier-transform infrared spectroscopy. The average number of the carbon-carbon double bonds of the resulting vinyl oligomer is high to be 7.2. The kinetic… More >

  • Open Access

    ARTICLE

    Chitosan/Nanocrystalline Cellulose Biocomposites Based on Date Palm (Phoenix Dactylifera L.) Sheath Fibers

    Abeer M. Adel1, Amira M. El-Shafei2, Atef A. Ibrahim1, Mona T. Al-Shemy1,*

    Journal of Renewable Materials, Vol.7, No.6, pp. 567-582, 2019, DOI:10.32604/jrm.2019.00034

    Abstract In this study, nanocrystalline celluloses were used to enhance physical, mechanical and water vapor barrier properties of chitosan films for potential food packaging applications. Two different mineral acids (sulfuric and phosphoric) were used to extract nanocrystalline cellulose from date palm sheath fibers. The influence of cellulose I and cellulose II on the properties of the isolated nanocrystalline celluloses (e.g., yield, energy and length of intra- and intermolecular hydrogen bonds, and degree of substitution) were studied too. The characteristics of chitosan biocomposite film with phosphorylated nanocrystalline cellulose were compared to those with sulfated nanocrystalline cellulose. Results showed that besides cellulose polymorphism,… More >

  • Open Access

    ARTICLE

    Poly(lactic acid)-starch/Expandable Graphite (PLA-starch/EG) Flame Retardant Composites

    Mfiso Emmanuel Mngomezulu1, Adriaan Stephanus Luyt2, Steve Anthony Chapple3, Maya Jacob John3,4*

    Journal of Renewable Materials, Vol.6, No.1, pp. 26-37, 2018, DOI:10.7569/JRM.2017.634140

    Abstract This work reports on the effect of commercial expandable graphite (EG) on the flammability and thermal decomposition properties of PLA-starch blend. The PLA-starch/EG composites were prepared by melt-mixing and their thermal stability, volatile pyrolysis products and flammability characteristics were investigated. The char residues of the composites, after combustion in a cone calorimeter, were analyzed with environmental scanning electron microscopy (ESEM). The thermal decomposition stability of the composites improved in the presence of EG. However, the char content was less than expected as per the combination of the wt% EG added into PLA-starch and the % residue of PLA-starch. The flammability… More >

  • Open Access

    ARTICLE

    Effect of Sepiolite Content on Hydrophilicity and Thermal Stability of Poly(butyl lactate methacrylate)

    M. Purushothaman†,1, P. Santhana Gopala Krishnan1,2*, S. K. Nayak1,2

    Journal of Renewable Materials, Vol.5, No.5, pp. 363-370, 2017, DOI:10.7569/JRM.2017.634128

    Abstract In the present work, the hydrophilicity and thermal behavior of nanocomposites of poly(butyl lactate methacrylate) were investigated using different weight percent of sepiolite. These nanocomposites were prepared by solution casting method. X-ray diffraction (XRD) studies indicated that the increase in sepiolite content decreased the average molecular interchain spacing () values from 7.18 to 6.23 Å in nanocomposites. Apart from the amorphous halo peak of nanocomposites, the appearance of crystalline peak at 7.41° was due to the d110 plane of sepiolite. Surface morphology of nanocomposites was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques and the uniform… More >

Displaying 11-20 on page 2 of 21. Per Page