Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    A Comparative Study of Optimized-LSTM Models Using Tree-Structured Parzen Estimator for Traffic Flow Forecasting in Intelligent Transportation

    Hamza Murad Khan1, Anwar Khan1,*, Santos Gracia Villar2,3,4, Luis Alonso Dzul Lopez2,5,6, Abdulaziz Almaleh7, Abdullah M. Al-Qahtani8

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3369-3388, 2025, DOI:10.32604/cmc.2025.060474 - 16 April 2025

    Abstract Traffic forecasting with high precision aids Intelligent Transport Systems (ITS) in formulating and optimizing traffic management strategies. The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity. To address this problem, this paper uses the Tree-structured Parzen Estimator (TPE) to tune the hyperparameters of the Long Short-term Memory (LSTM) deep learning framework. The Tree-structured Parzen Estimator (TPE) uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples. This ensures fast convergence in… More >

  • Open Access

    ARTICLE

    MSSTGCN: Multi-Head Self-Attention and Spatial-Temporal Graph Convolutional Network for Multi-Scale Traffic Flow Prediction

    Xinlu Zong*, Fan Yu, Zhen Chen, Xue Xia

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3517-3537, 2025, DOI:10.32604/cmc.2024.057494 - 17 February 2025

    Abstract Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a More >

  • Open Access

    ARTICLE

    Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok: An Application of a Continuous Convolutional Neural Network

    Pongsakon Promsawat1, Weerapan Sae-dan2,*, Marisa Kaewsuwan3, Weerawat Sudsutad3, Aphirak Aphithana3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 579-607, 2025, DOI:10.32604/cmes.2024.057774 - 17 December 2024

    Abstract The ability to accurately predict urban traffic flows is crucial for optimising city operations. Consequently, various methods for forecasting urban traffic have been developed, focusing on analysing historical data to understand complex mobility patterns. Deep learning techniques, such as graph neural networks (GNNs), are popular for their ability to capture spatio-temporal dependencies. However, these models often become overly complex due to the large number of hyper-parameters involved. In this study, we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks (DMST-GNODE), a framework based on ordinary differential equations (ODEs) that autonomously discovers effective spatial-temporal… More >

  • Open Access

    ARTICLE

    Classified VPN Network Traffic Flow Using Time Related to Artificial Neural Network

    Saad Abdalla Agaili Mohamed*, Sefer Kurnaz

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 819-841, 2024, DOI:10.32604/cmc.2024.050474 - 18 July 2024

    Abstract VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world. However, increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorize VPN network data. We present a novel VPN network traffic flow classification method utilizing Artificial Neural Networks (ANN). This paper aims to provide a reliable system that can identify a virtual private network (VPN) traffic from intrusion attempts, data exfiltration, and denial-of-service assaults. We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns. Next, we create an ANN architecture that can… More >

  • Open Access

    ARTICLE

    Traffic Flow Prediction with Heterogeneous Spatiotemporal Data Based on a Hybrid Deep Learning Model Using Attention-Mechanism

    Jing-Doo Wang1, Chayadi Oktomy Noto Susanto1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1711-1728, 2024, DOI:10.32604/cmes.2024.048955 - 20 May 2024

    Abstract A significant obstacle in intelligent transportation systems (ITS) is the capacity to predict traffic flow. Recent advancements in deep neural networks have enabled the development of models to represent traffic flow accurately. However, accurately predicting traffic flow at the individual road level is extremely difficult due to the complex interplay of spatial and temporal factors. This paper proposes a technique for predicting short-term traffic flow data using an architecture that utilizes convolutional bidirectional long short-term memory (Conv-BiLSTM) with attention mechanisms. Prior studies neglected to include data pertaining to factors such as holidays, weather conditions, and More >

  • Open Access

    ARTICLE

    Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks

    Yunchang Liu1,*, Fei Wan1, Chengwu Liang2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4343-4361, 2024, DOI:10.32604/cmc.2024.047211 - 26 March 2024

    Abstract Traffic flow prediction plays a key role in the construction of intelligent transportation system. However, due to its complex spatio-temporal dependence and its uncertainty, the research becomes very challenging. Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes. However, due to the time-varying spatial correlation of the traffic network, there is no fixed node relationship, and these methods cannot effectively integrate the temporal and spatial features. This paper proposes a novel temporal-spatial dynamic graph More >

  • Open Access

    ARTICLE

    Traffic Flow Prediction with Heterogenous Data Using a Hybrid CNN-LSTM Model

    Jing-Doo Wang1, Chayadi Oktomy Noto Susanto1,2,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3097-3112, 2023, DOI:10.32604/cmc.2023.040914 - 08 October 2023

    Abstract Predicting traffic flow is a crucial component of an intelligent transportation system. Precisely monitoring and predicting traffic flow remains a challenging endeavor. However, existing methods for predicting traffic flow do not incorporate various external factors or consider the spatiotemporal correlation between spatially adjacent nodes, resulting in the loss of essential information and lower forecast performance. On the other hand, the availability of spatiotemporal data is limited. This research offers alternative spatiotemporal data with three specific features as input, vehicle type (5 types), holidays (3 types), and weather (10 conditions). In this study, the proposed model… More >

  • Open Access

    ARTICLE

    Flow Direction Level Traffic Flow Prediction Based on a GCN-LSTM Combined Model

    Fulu Wei1, Xin Li1, Yongqing Guo1,*, Zhenyu Wang2, Qingyin Li1, Xueshi Ma3

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2001-2018, 2023, DOI:10.32604/iasc.2023.035799 - 21 June 2023

    Abstract Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning. Due to the complexity of road traffic flow data, traffic flow prediction has been one of the challenging tasks to fully exploit the spatiotemporal characteristics of roads to improve prediction accuracy. In this study, a combined flow direction level traffic flow prediction graph convolutional network (GCN) and long short-term memory (LSTM) model based on spatiotemporal characteristics is proposed. First, a GCN model is employed to capture the topological structure of… More >

  • Open Access

    ARTICLE

    Kalman Filter-Based CNN-BiLSTM-ATT Model for Traffic Flow Prediction

    Hong Zhang1,2,*, Gang Yang1, Hailiang Yu1, Zan Zheng1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1047-1063, 2023, DOI:10.32604/cmc.2023.039274 - 08 June 2023

    Abstract To accurately predict traffic flow on the highways, this paper proposes a Convolutional Neural Network-Bi-directional Long Short-Term Memory-Attention Mechanism (CNN-BiLSTM-Attention) traffic flow prediction model based on Kalman-filtered data processing. Firstly, the original fluctuating data is processed by Kalman filtering, which can reduce the instability of short-term traffic flow prediction due to unexpected accidents. Then the local spatial features of the traffic data during different periods are extracted, dimensionality is reduced through a one-dimensional CNN, and the BiLSTM network is used to analyze the time series information. Finally, the Attention Mechanism assigns feature weights and performs… More >

  • Open Access

    ARTICLE

    Short Term Traffic Flow Prediction Using Hybrid Deep Learning

    Mohandu Anjaneyulu, Mohan Kubendiran*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1641-1656, 2023, DOI:10.32604/cmc.2023.035056 - 06 February 2023

    Abstract Traffic flow prediction in urban areas is essential in the Intelligent Transportation System (ITS). Short Term Traffic Flow (STTF) prediction impacts traffic flow series, where an estimation of the number of vehicles will appear during the next instance of time per hour. Precise STTF is critical in Intelligent Transportation System. Various extinct systems aim for short-term traffic forecasts, ensuring a good precision outcome which was a significant task over the past few years. The main objective of this paper is to propose a new model to predict STTF for every hour of a day. In… More >

Displaying 1-10 on page 1 of 30. Per Page