Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (207)
  • Open Access

    ARTICLE

    Advanced Video Processing and Data Transmission Technology for Unmanned Ground Vehicles in the Internet of Battlefield Things (loBT)

    Tai Liu1,2, Mao Ye2,*, Feng Wu3, Chao Zhu2, Bo Chen2, Guoyan Zhang1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072692 - 12 January 2026

    Abstract With the continuous advancement of unmanned technology in various application domains, the development and deployment of blind-spot-free panoramic video systems have gained increasing importance. Such systems are particularly critical in battlefield environments, where advanced panoramic video processing and wireless communication technologies are essential to enable remote control and autonomous operation of unmanned ground vehicles (UGVs). However, conventional video surveillance systems suffer from several limitations, including limited field of view, high processing latency, low reliability, excessive resource consumption, and significant transmission delays. These shortcomings impede the widespread adoption of UGVs in battlefield settings. To overcome these… More >

  • Open Access

    ARTICLE

    Enhancing IoT-Enabled Electric Vehicle Efficiency: Smart Charging Station and Battery Management Solution

    Supriya Wadekar1,*, Shailendra Mittal1, Ganesh Wakte2, Rajshree Shinde2

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.071761 - 27 December 2025

    Abstract Rapid evolutions of the Internet of Electric Vehicles (IoEVs) are reshaping and modernizing transport systems, yet challenges remain in energy efficiency, better battery aging, and grid stability. Typical charging methods allow for EVs to be charged without thought being given to the condition of the battery or the grid demand, thus increasing energy costs and battery aging. This study proposes a smart charging station with an AI-powered Battery Management System (BMS), developed and simulated in MATLAB/Simulink, to increase optimality in energy flow, battery health, and impractical scheduling within the IoEV environment. The system operates through… More >

  • Open Access

    ARTICLE

    Research on Electric Vehicle Charging Optimization Strategy Based on Improved Crossformer for Carbon Emission Factor Prediction

    Hongyu Wang1, Wenwu Cui1, Kai Cui1, Zixuan Meng2,*, Bin Li2, Wei Zhang1, Wenwen Li1

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069576 - 27 December 2025

    Abstract To achieve low-carbon regulation of electric vehicle (EV) charging loads under the “dual carbon” goals, this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multi-objective optimization. First, a dual-convolution enhanced improved Crossformer prediction model is constructed, which employs parallel 1 × 1 global and 3 × 3 local convolution modules (Integrated Convolution Block, ICB) for multi-scale feature extraction, combined with an Adaptive Spectral Block (ASB) to enhance time-series fluctuation modeling. Based on high-precision predictions, a carbon-electricity cost joint optimization model is further designed to balance economic, environmental, and grid-friendly objectives.… More > Graphic Abstract

    Research on Electric Vehicle Charging Optimization Strategy Based on Improved Crossformer for Carbon Emission Factor Prediction

  • Open Access

    REVIEW

    FSL-TM: Review on the Integration of Federated Split Learning with TinyML in the Internet of Vehicles

    Meenakshi Aggarwal1, Vikas Khullar2,*, Nitin Goyal3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.072673 - 09 December 2025

    Abstract The Internet of Vehicles, or IoV, is expected to lessen pollution, ease traffic, and increase road safety. IoV entities’ interconnectedness, however, raises the possibility of cyberattacks, which can have detrimental effects. IoV systems typically send massive volumes of raw data to central servers, which may raise privacy issues. Additionally, model training on IoV devices with limited resources normally leads to slower training times and reduced service quality. We discuss a privacy-preserving Federated Split Learning with Tiny Machine Learning (TinyML) approach, which operates on IoV edge devices without sharing sensitive raw data. Specifically, we focus on… More >

  • Open Access

    ARTICLE

    Overcoming Dynamic Connectivity in Internet of Vehicles: A DAG Lattice Blockchain with Reputation-Based Incentive

    Xiaodong Zhang1, Wenhan Hou2,*, Juanjuan Wang3, Leixiao Li1, Pengfei Yue1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072384 - 09 December 2025

    Abstract Blockchain offers a promising solution to the security challenges faced by the Internet of Vehicles (IoV). However, due to the dynamic connectivity of IoV, blockchain based on a single-chain structure or Directed Acyclic Graph (DAG) structure often suffer from performance limitations. The DAG lattice structure is a novel blockchain model in which each node maintains its own account chain, and only the node itself is allowed to update it. This feature makes the DAG lattice structure particularly suitable for addressing the challenges in dynamically connected IoV environment. In this paper, we propose a blockchain architecture… More >

  • Open Access

    ARTICLE

    A Joint Optimization Model for Device Selection and Power Allocation under Dynamic Uncertain Environments

    Bohui Li1, Bin Wang1, Linjie Wu1, Xingjuan Cai1,*, Maoqing Zhang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-28, 2026, DOI:10.32604/cmc.2025.070592 - 09 December 2025

    Abstract Federated Learning (FL) provides an effective framework for efficient processing in vehicular edge computing. However, the dynamic and uncertain communication environment, along with the performance variations of vehicular devices, affect the distribution and uploading processes of model parameters. In FL-assisted Internet of Vehicles (IoV) scenarios, challenges such as data heterogeneity, limited device resources, and unstable communication environments become increasingly prominent. These issues necessitate intelligent vehicle selection schemes to enhance training efficiency. Given this context, we propose a new scenario involving FL-assisted IoV systems under dynamic and uncertain communication conditions, and develop a dynamic interval multi-objective More >

  • Open Access

    ARTICLE

    A Multi-Objective Adaptive Car-Following Framework for Autonomous Connected Vehicles with Deep Reinforcement Learning

    Abu Tayab1,*, Yanwen Li1, Ahmad Syed2, Ghanshyam G. Tejani3,4,*, Doaa Sami Khafaga5, El-Sayed M. El-kenawy6, Amel Ali Alhussan7, Marwa M. Eid8,9

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-27, 2026, DOI:10.32604/cmc.2025.070583 - 09 December 2025

    Abstract Autonomous connected vehicles (ACV) involve advanced control strategies to effectively balance safety, efficiency, energy consumption, and passenger comfort. This research introduces a deep reinforcement learning (DRL)-based car-following (CF) framework employing the Deep Deterministic Policy Gradient (DDPG) algorithm, which integrates a multi-objective reward function that balances the four goals while maintaining safe policy learning. Utilizing real-world driving data from the highD dataset, the proposed model learns adaptive speed control policies suitable for dynamic traffic scenarios. The performance of the DRL-based model is evaluated against a traditional model predictive control-adaptive cruise control (MPC-ACC) controller. Results show that the… More >

  • Open Access

    ARTICLE

    Machine Learning-Based GPS Spoofing Detection and Mitigation for UAVs

    Charlotte Olivia Namagembe, Mohamad Ibrahim, Md Arafatur Rahman*, Prashant Pillai

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.070316 - 09 December 2025

    Abstract The rapid proliferation of commercial unmanned aerial vehicles (UAVs) has revolutionized fields such as precision agriculture and disaster response. However, their heavy reliance on GPS navigation leaves them highly vulnerable to spoofing attacks, with potentially severe consequences. To mitigate this threat, we present a machine learning-driven framework for real-time GPS spoofing detection, designed with a balance of detection accuracy and computational efficiency. Our work is distinguished by the creation of a comprehensive dataset of 10,000 instances that integrates both simulated and real-world data, enabling robust and generalizable model development. A comprehensive evaluation of multiple classification More >

  • Open Access

    ARTICLE

    An Optimal Right-Turn Coordination System for Connected and Automated Vehicles at Urban Intersections

    Mahmudul Hasan1, Shuji Doman1, A. S. M. Bakibillah2, Md Abdus Samad Kamal1,*, Kou Yamada1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-17, 2026, DOI:10.32604/cmc.2025.070222 - 10 November 2025

    Abstract Traffic at urban intersections frequently encounters unexpected obstructions, resulting in congestion due to uncooperative and priority-based driving behavior. This paper presents an optimal right-turn coordination system for Connected and Automated Vehicles (CAVs) at single-lane intersections, particularly in the context of left-hand side driving on roads. The goal is to facilitate smooth right turns for certain vehicles without creating bottlenecks. We consider that all approaching vehicles share relevant information through vehicular communications. The Intersection Coordination Unit (ICU) processes this information and communicates the optimal crossing or turning times to the vehicles. The primary objective of this… More >

  • Open Access

    ARTICLE

    A Secure and Efficient Distributed Authentication Scheme for IoV with Reputation-Driven Consensus and SM9

    Hui Wei1,2, Zhanfei Ma1,3,*, Jing Jiang1, Bisheng Wang1, Zhong Di1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.069236 - 10 November 2025

    Abstract The Internet of Vehicles (IoV) operates in highly dynamic and open network environments and faces serious challenges in secure and real-time authentication and consensus mechanisms. Existing methods often suffer from complex certificate management, inefficient consensus protocols, and poor resilience in high-frequency communication, resulting in high latency, poor scalability, and unstable network performance. To address these issues, this paper proposes a secure and efficient distributed authentication scheme for IoV with reputation-driven consensus and SM9. First, this paper proposes a decentralized authentication architecture that utilizes the certificate-free feature of SM9, enabling lightweight authentication and key negotiation, thereby… More >

Displaying 1-10 on page 1 of 207. Per Page