Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (167)
  • Open Access

    ARTICLE

    Coordinated Voltage Control of Distribution Network Considering Multiple Types of Electric Vehicles

    Liang Liu, Guangda Xu*, Yuan Zhao, Yi Lu, Yu Li, Jing Gao

    Energy Engineering, Vol.121, No.2, pp. 377-404, 2024, DOI:10.32604/ee.2023.041311 - 25 January 2024

    Abstract The couple between the power network and the transportation network (TN) is deepening gradually with the increasing penetration rate of electric vehicles (EV), which also poses a great challenge to the traditional voltage control scheme. In this paper, we propose a coordinated voltage control strategy for the active distribution networks considering multiple types of EV. In the first stage, the action of on-load tap changer and capacitor banks, etc., are determined by optimal power flow calculation, and the node electricity price is also determined based on dynamic time-of-use tariff mechanism. In the second stage, multiple… More >

  • Open Access

    REVIEW

    AI-Based UAV Swarms for Monitoring and Disease Identification of Brassica Plants Using Machine Learning: A Review

    Zain Anwar Ali1,2,*, Dingnan Deng1, Muhammad Kashif Shaikh3, Raza Hasan4, Muhammad Aamir Khan2

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 1-34, 2024, DOI:10.32604/csse.2023.041866 - 26 January 2024

    Abstract Technological advances in unmanned aerial vehicles (UAVs) pursued by artificial intelligence (AI) are improving remote sensing applications in smart agriculture. These are valuable tools for monitoring and disease identification of plants as they can collect data with no damage and effects on plants. However, their limited carrying and battery capacities restrict their performance in larger areas. Therefore, using multiple UAVs, especially in the form of a swarm is more significant for monitoring larger areas such as crop fields and forests. The diversity of research studies necessitates a literature review for more progress and contribution in… More >

  • Open Access

    ARTICLE

    Assessment of the Influence of Tunnel Settlement on Operational Performance of Subway Vehicles

    Gang Niu1,2, Guangwei Zhang1, Zhaoyang Jin1, Wei Zhang3,*, Xiang Liu3

    Structural Durability & Health Monitoring, Vol.18, No.1, pp. 55-71, 2024, DOI:10.32604/sdhm.2023.044832 - 11 January 2024

    Abstract In the realm of subway shield tunnel operations, the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern. This study introduces an advanced analytical model to investigate rail geometric deformations caused by settlement within a vehicle-track-tunnel coupled system. The model integrates the geometric deformations of the track, attributed to settlement, as track irregularities. A novel “cyclic model” algorithm was employed to enhance computational efficiency without compromising on precision, a claim that was rigorously validated. The model’s capability extends to analyzing the time-history responses of vehicles traversing settlement-affected areas. The More >

  • Open Access

    ARTICLE

    Secure and Reliable Routing in the Internet of Vehicles Network: AODV-RL with BHA Attack Defense

    Nadeem Ahmed1,*, Khalid Mohammadani2, Ali Kashif Bashir3,4,5, Marwan Omar6, Angel Jones7, Fayaz Hassan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 633-659, 2024, DOI:10.32604/cmes.2023.031342 - 30 December 2023

    Abstract Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles (IoV). However, intricate security challenges are intertwined with technological progress: Vehicular ad hoc Networks (VANETs), a core component of IoV, face security issues, particularly the Black Hole Attack (BHA). This malicious attack disrupts the seamless flow of data and threatens the network’s overall reliability; also, BHA strategically disrupts communication pathways by dropping data packets from legitimate nodes altogether. Recognizing the importance of this challenge, we have introduced a new solution called ad hoc On-Demand Distance Vector-Reputation-based mechanism Local Outlier… More >

  • Open Access

    ARTICLE

    Traffic Control Based on Integrated Kalman Filtering and Adaptive Quantized Q-Learning Framework for Internet of Vehicles

    Othman S. Al-Heety1,*, Zahriladha Zakaria1,*, Ahmed Abu-Khadrah2, Mahamod Ismail3, Sarmad Nozad Mahmood4, Mohammed Mudhafar Shakir5, Sameer Alani6, Hussein Alsariera1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2103-2127, 2024, DOI:10.32604/cmes.2023.029509 - 15 December 2023

    Abstract Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision. In this article, these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data. The framework integrates Kalman filtering and Q-learning. Unlike smoothing Kalman filtering, our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error. Unlike traditional Q-learning, our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from… More >

  • Open Access

    ARTICLE

    3D Road Network Modeling and Road Structure Recognition in Internet of Vehicles

    Dun Cao1, Jia Ru1, Jian Qin1, Amr Tolba2, Jin Wang1, Min Zhu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1365-1384, 2024, DOI:10.32604/cmes.2023.030260 - 17 November 2023

    Abstract Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles, people, transportation infrastructure, and networks, thereby realizing a more intelligent and efficient transportation system. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topological structure of IoV to have the high space and time complexity. Network modeling and structure recognition for 3D roads can benefit the description of topological changes for IoV. This paper proposes a 3D general road model based on discrete points of roads obtained from GIS. First, the constraints… More >

  • Open Access

    ARTICLE

    LSDA-APF: A Local Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on 5G Communication Environment

    Xiaoli Li, Tongtong Jiao#, Jinfeng Ma, Dongxing Duan, Shengbin Liang#,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 595-617, 2024, DOI:10.32604/cmes.2023.029367 - 22 September 2023

    Abstract In view of the complex marine environment of navigation, especially in the case of multiple static and dynamic obstacles, the traditional obstacle avoidance algorithms applied to unmanned surface vehicles (USV) are prone to fall into the trap of local optimization. Therefore, this paper proposes an improved artificial potential field (APF) algorithm, which uses 5G communication technology to communicate between the USV and the control center. The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios. Considering the various scenarios between the… More > Graphic Abstract

    LSDA-APF: A Local Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on 5G Communication Environment

  • Open Access

    ARTICLE

    Study on Two-Tier EV Charging Station Recommendation Strategy under Multi-Factor Influence

    Miao Liu, Lei Feng, Yexun Yuan, Ye Liu, Peng Geng*

    Journal on Artificial Intelligence, Vol.5, pp. 181-193, 2023, DOI:10.32604/jai.2023.046066 - 28 December 2023

    Abstract This article aims to address the clustering effect caused by unorganized charging of electric vehicles by adopting a two-tier recommendation method. The electric vehicles (EVs) are classified into high-level alerts and general alerts based on their state of charge (SOC). EVs with high-level alerts have the most urgent charging needs, so the distance to charging stations is set as the highest priority for recommendations. For users with general alerts, a comprehensive EV charging station recommendation model is proposed, taking into account factors such as charging price, charging time, charging station preference, and distance to the More >

  • Open Access

    ARTICLE

    Flexible Global Aggregation and Dynamic Client Selection for Federated Learning in Internet of Vehicles

    Tariq Qayyum1, Zouheir Trabelsi1,*, Asadullah Tariq1, Muhammad Ali2, Kadhim Hayawi3, Irfan Ud Din4

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1739-1757, 2023, DOI:10.32604/cmc.2023.043684 - 29 November 2023

    Abstract Federated Learning (FL) enables collaborative and privacy-preserving training of machine learning models within the Internet of Vehicles (IoV) realm. While FL effectively tackles privacy concerns, it also imposes significant resource requirements. In traditional FL, trained models are transmitted to a central server for global aggregation, typically in the cloud. This approach often leads to network congestion and bandwidth limitations when numerous devices communicate with the same server. The need for Flexible Global Aggregation and Dynamic Client Selection in FL for the IoV arises from the inherent characteristics of IoV environments. These include diverse and distributed… More >

  • Open Access

    ARTICLE

    Shadow Extraction and Elimination of Moving Vehicles for Tracking Vehicles

    Kalpesh Jadav1, Vishal Sorathiya1,*, Walid El-Shafai2, Torki Altameem3, Moustafa H. Aly4, Vipul Vekariya5, Kawsar Ahmed6, Francis M. Bui6

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2009-2030, 2023, DOI:10.32604/cmc.2023.043168 - 29 November 2023

    Abstract Shadow extraction and elimination is essential for intelligent transportation systems (ITS) in vehicle tracking application. The shadow is the source of error for vehicle detection, which causes misclassification of vehicles and a high false alarm rate in the research of vehicle counting, vehicle detection, vehicle tracking, and classification. Most of the existing research is on shadow extraction of moving vehicles in high intensity and on standard datasets, but the process of extracting shadows from moving vehicles in low light of real scenes is difficult. The real scenes of vehicles dataset are generated by self on… More >

Displaying 31-40 on page 4 of 167. Per Page