Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (234)
  • Open Access

    ARTICLE

    A Non-Intrusive Spiral Coil Heat Exchanger for Waste Heat Recovery from HVAC Units: Experimental and Thermal Performance Analysis

    S. Srinivasa senthil, K. Vijayakumar*

    Energy Engineering, Vol.122, No.12, pp. 5149-5173, 2025, DOI:10.32604/ee.2025.070889 - 27 November 2025

    Abstract Heating, ventilation, and air conditioning (HVAC) systems contribute substantially to global energy consumption, while rejecting significant amounts of low-grade heat into the environment. This paper presents a non-intrusive spiral-coil heat exchanger designed to recover waste heat from the outdoor condenser of a split-type air conditioner. The system operates externally without altering the existing HVAC configuration, thereby rendering it suitable for retrofitting. Water was circulated as the working fluid at flow rates of 0.028–0.052 kg/s to assess thermal performance. Performance indicators, including the outlet water temperature, heat transfer rate, convective coefficient, and efficiency, were systematically evaluated.… More >

  • Open Access

    ARTICLE

    Sustainable Egg Packaging Waste Biocomposites Derived from Recycled Wood Fibers and Fungal Filaments

    Ilze Irbe1,*, Laura Andze1, Inese Filipova1,2

    Journal of Renewable Materials, Vol.13, No.11, pp. 2139-2154, 2025, DOI:10.32604/jrm.2025.02025-0107 - 24 November 2025

    Abstract Growing environmental concerns and the need for sustainable alternatives to synthetic materials have led to increased interest in bio-based composites. This study investigates the development and characterization of sustainable egg packaging waste (EPW) biocomposites derived from recycled wood fibers and fungal mycelium filaments as a natural binder. Three formulations were prepared using EPW as the primary substrate, with and without the addition of hemp shives and sawdust as co-substrates. The composites were evaluated for granulometry, density, mechanical strength, hygroscopic behavior, thermal conductivity, and fire performance using cone calorimetry. Biocomposites, composed exclusively of egg packaging waste,… More >

  • Open Access

    ARTICLE

    Direct Production of Sorbitol-Plasticized Bioplastic Film from Gracilaria sp.

    Ahmad Faldo1, Labanta Marbun1, Hezekiah Lemuel Putra Zebua1, Fateha Fateha2, Rossy Choerun Nissa2, Yurin Karunia Apsha Albaina Iasya3, Riri Uswatun Annifah3, Amrul Amrul1, Yeyen Nurhamiyah2,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 743-755, 2025, DOI:10.32604/jpm.2025.069981 - 30 September 2025

    Abstract Conventional bioplastic production from seaweed often relies on extraction processes that are costly, time-consuming, and yield limited product. This study presents a direct fabrication method using Gracilaria sp., a red seaweed rich in polysaccharides, to produce bioplastic films without the need for extraction. Sorbitol was incorporated as a plasticizer at concentrations of 0%–10% (w/w) to modify film characteristics. Thermal analysis revealed improved stability at moderate sorbitol levels (5%–7%), while excessive plasticizer slightly reduced thermal resistance. Mechanical testing showed that sorbitol increased film flexibility and elongation at break, though tensile strength and stiffness declined. Tear strength followed More >

  • Open Access

    ARTICLE

    Acetylation of Corn Stalk (Zea mays) for Its Valorization

    Jhony César Muñoz Zambrano, Douglas Alexander Bermúdez Parrales, María Antonieta Riera*

    Journal of Polymer Materials, Vol.42, No.3, pp. 837-851, 2025, DOI:10.32604/jpm.2025.067277 - 30 September 2025

    Abstract Agricultural waste is a potentially interesting resource due to the compounds present. In this study, cellulose was extracted from corn stalks (Zea mays) and subsequently converted into cellulose acetate (CA). Before the extraction process, the waste sample was characterized by pH, moisture, ash, protein content, total reducing sugars (TRS), carbohydrates, cellulose, hemicellulose, and lignin. Acid and alkaline hydrolysis were performed with different reagents, concentrations, and extraction times. Sulfuric acid (H2SO4) and acetic acid (CH3COOH) were used in the acid hydrolysis, while sodium hydroxide (NaOH) was used in the alkaline hydrolysis. Three concentrations (0.62, 1.25, 2.5)% and two… More >

  • Open Access

    ARTICLE

    Molasses Adhesive Boosts Bio-Pellet Potential: A Study on Oyster Mushroom Baglog Waste

    Sarah Augustina1, Ananda Suci Bazhafah2, Jajang Sutiawan1, Sudarmanto1, Eko Setio Wibowo1, Nissa Nurfajrin Solihat1, Alvin Muhammad Savero1, Ismadi Ismadi1, Jayadi Jayadi3, Agus Sukarto Wismogroho4, Nuniek Ina Ratnaningtyas2, Sukma Surya Kusumah1,*

    Journal of Renewable Materials, Vol.13, No.9, pp. 1765-1781, 2025, DOI:10.32604/jrm.2025.02025-0014 - 22 September 2025

    Abstract The increasing demand for renewable energy sources has driven the exploration of innovative materials for biofuel production. This study investigates bio-pellet characteristics derived from several oyster mushroom baglog wastes with varying concentrations of molasses as an adhesive. The process began with sun-drying the baglog waste for three days, followed by oven drying at 80°C for 24 h. Bio-pellets were produced by blending baglog waste with molasses at concentrations of 5% and 10% (w/v), then subsequently fed into a pellet mill. The bio-pellets were left to rest for one hour before analysis. The quality of bio-pellets… More > Graphic Abstract

    Molasses Adhesive Boosts Bio-Pellet Potential: A Study on Oyster Mushroom Baglog Waste

  • Open Access

    ARTICLE

    Calcination Analysis of CaCO3 from Waste Oyster Shells for Partial Cement Replacement

    Bunyamin Bunyamin1,2, Taufiq Saidi3, Sugiarto Sugiarto3,4, Muttaqin Hasan3,*

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1089-1109, 2025, DOI:10.32604/sdhm.2025.066887 - 05 September 2025

    Abstract Aceh in Indonesia is rich in marine resources and abundant fishery products such as oyster. Traditionally, fishermen only harvest oysters and discard the shells, which can cause pollution and environmental contamination. Waste Oyster Shells (WOS) contain a high percentage of calcium carbonate (CaCO3) that experiences thermal decomposition at high temperature, following the reaction CaCO3 → CaO + CO2 (ΔT = 825°C). At temperature > 900°C, dead-burned lime is formed, which severely influences CaO reactivity. However, the optimum temperature for producing high CaO content is still uncertain. Therefore, this study aimed to determine the optimum calcination temperature to… More > Graphic Abstract

    Calcination Analysis of CaCO<sub><b>3</b></sub> from Waste Oyster Shells for Partial Cement Replacement

  • Open Access

    ARTICLE

    A Feasibility Study of Renewable Energy Generation from Palm Oil Waste in Malaysia

    Mujahid Tabassum1,*, Md. Bazlul Mobin Siddique2, Hadi Nabipour Afrouzi3, Saad Bin Abdul Kashem4

    Energy Engineering, Vol.122, No.9, pp. 3433-3457, 2025, DOI:10.32604/ee.2025.065955 - 26 August 2025

    Abstract Malaysia, as one of the highest producers of palm oil globally and one of the largest exporters, has a huge potential to use palm oil waste to generate electricity since an abundance of waste is produced during the palm oil extraction process. In this paper, we have first examined and compared the use of palm oil waste as biomass for electricity generation in different countries with reference to Malaysia. Some areas with default accessibility in rural areas, like those in Sabah and Sarawak, require a cheap and reliable source of electricity. Palm oil waste possesses… More >

  • Open Access

    ARTICLE

    Design and Research of Eco-Friendly Biodegradable Composites Based on Renewable Biopolymer Materials, Reed, and Hemp Waste

    Artem Kariev1, Vladimir Lebedev1, Denis Miroshnichenko2,3, Yevgen Sokol4, Magomediemin Gasanov 5, Anna Cherkashina1, Yuriy Lutsenko3, Serhiy Pyshyev6,*

    Journal of Renewable Materials, Vol.13, No.8, pp. 1645-1660, 2025, DOI:10.32604/jrm.2025.02025-0049 - 22 August 2025

    Abstract Nowadays, the development of effective bioplastics aims to combine traditional plastics’ functionality with environmentally friendly properties. The most effective and durable modern bioplastics are made from the edible part of crops. This forces bioplastics to compete with food production because the crops that produce bioplastics can also be used for human nutrition. That is why the article’s main focus is on creating bioplastics using renewable, non-food raw materials (cellulose, lignin, etc.). Eco-friendly composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate, corn starch, and poly(lactic acid) with reed and hemp waste as a filler.… More > Graphic Abstract

    Design and Research of Eco-Friendly Biodegradable Composites Based on Renewable Biopolymer Materials, Reed, and Hemp Waste

  • Open Access

    ARTICLE

    An Improved YOLO-Based Waste Detection Model and Its Integration to Robotic Gripping Systems

    Anjie Wang1,2, Haining Jiao1,2,*, Zhichao Chen1,2,*, Jie Yang1,2

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5773-5790, 2025, DOI:10.32604/cmc.2025.066852 - 30 July 2025

    Abstract With the rapid development of the Internet of Things (IoT), artificial intelligence, and big data, waste-sorting systems must balance high accuracy, low latency, and resource efficiency. This paper presents an edge-friendly intelligent waste-sorting system that integrates a lightweight visual neural network, a pentagonal-trajectory robotic arm, and IoT connectivity to meet the requirements of real-time response and high accuracy. A lightweight object detection model, YOLO-WasNet (You Only Look Once for Waste Sorting Network), is proposed to optimize performance on edge devices. YOLO-WasNet adopts a lightweight backbone, applies Spatial Pyramid Pooling-Fast (SPPF) and Convolutional Block Attention Module… More >

  • Open Access

    ARTICLE

    Two-Stage Optimal Dispatching of Electricity-Hydrogen-Waste Multi-Energy System with Phase Change Material Thermal Storage

    Linwei Yao1,*, Xiangning Lin1,2, Huashen He1, Jiahui Yang1

    Energy Engineering, Vol.122, No.8, pp. 3285-3308, 2025, DOI:10.32604/ee.2025.066628 - 24 July 2025

    Abstract In order to address the synergistic optimization of energy efficiency improvement in the waste incineration power plant (WIPP) and renewable energy accommodation, an electricity-hydrogen-waste multi-energy system integrated with phase change material (PCM) thermal storage is proposed. First, a thermal energy management framework is constructed, combining PCM thermal storage with the alkaline electrolyzer (AE) waste heat recovery and the heat pump (HP), while establishing a PCM-driven waste drying system to enhance the efficiency of waste incineration power generation. Next, a flue gas treatment method based on purification-separation-storage coordination is adopted, achieving spatiotemporal decoupling between waste incineration… More >

Displaying 11-20 on page 2 of 234. Per Page