Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (177)
  • Open Access

    ARTICLE

    Entropy Based Feature Fusion Using Deep Learning for Waste Object Detection and Classification Model

    Ehab Bahaudien Ashary1, Sahar Jambi2, Rehab B. Ashari2, Mahmoud Ragab3,4,*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2953-2969, 2023, DOI:10.32604/csse.2023.041523

    Abstract Object Detection is the task of localization and classification of objects in a video or image. In recent times, because of its widespread applications, it has obtained more importance. In the modern world, waste pollution is one significant environmental problem. The prominence of recycling is known very well for both ecological and economic reasons, and the industry needs higher efficiency. Waste object detection utilizing deep learning (DL) involves training a machine-learning method to classify and detect various types of waste in videos or images. This technology is utilized for several purposes recycling and sorting waste, enhancing waste management and reducing… More >

  • Open Access

    ARTICLE

    Silica Gel from Chemical Glass Bottle Waste as Adsorbent for Methylene Blue: Optimization Using BBD

    Suprapto Suprapto, Putri Augista Nur Azizah, Yatim Lailun Ni’mah*

    Journal of Renewable Materials, Vol.11, No.12, pp. 4007-4023, 2023, DOI:10.32604/jrm.2023.031210

    Abstract This research focuses on the effective removal of methylene blue dye using silica gel synthesized from chemical glass bottle waste as an environmentally friendly and cost-effective adsorbent. The adsorption process was optimized using Box-Behnken Design (BBD) and Response Surface Methodology (RSM) to investigate the influence of pH (6; 8 and 10), contact time (15; 30 and 45 min), adsorbent mass (30; 50 and 70 mg), and initial concentration (20; 50 and 80 mg/L) of the adsorbate on the adsorption efficiency. The BBD was conducted using Google Colaboratory software, which encompassed 27 experiments with randomly assigned combinations. The silica gel synthesized… More > Graphic Abstract

    Silica Gel from Chemical Glass Bottle Waste as Adsorbent for Methylene Blue: Optimization Using BBD

  • Open Access

    ARTICLE

    Preparation of High Activity Admixture from Steel Slag, Phosphate Slag and Limestone Powder

    Ying Ji*, Xi Liu*

    Journal of Renewable Materials, Vol.11, No.11, pp. 3977-3989, 2023, DOI:10.32604/jrm.2023.028439

    Abstract The problem of low disposal and utilization rate of bulk industrial solid waste needs to be solved. In this paper, a high-activity admixture composed of steel slag-phosphate slag-limestone powder was proposed for most of the solid waste with low activity and a negative impact on concrete workability, combining the characteristics of each solid waste. The paper demonstrates the feasibility and explains the principle of the composite system in terms of water requirement of standard consistency, setting time, workability, and mechanical properties, combined with the composition of the phases, hydration temperature, and microscopic morphology. The results showed that the steel slag:phosphate… More > Graphic Abstract

    Preparation of High Activity Admixture from Steel Slag, Phosphate Slag and Limestone Powder

  • Open Access

    REVIEW

    Malachite Green Adsorption Using Carbon-Based and Non-Conventional Adsorbent Made from Biowaste and Biomass: A Review

    Annisa Ardiyanti, Suprapto Suprapto, Yatim Lailun Ni’mah*

    Journal of Renewable Materials, Vol.11, No.11, pp. 3789-3806, 2023, DOI:10.32604/jrm.2023.031354

    Abstract Dyes are pervasive contaminants in wastewater, posing significant health risks to both humans and animals. Among the various methods employed for effective dye removal, adsorption has emerged as a highly promising approach due to its notable advantages, including high efficiency, cost-effectiveness, low energy consumption, and operational simplicity compared to alternative treatments. This comprehensive review focuses on investigating adsorbents derived from biowastes and biomass, specifically carbon-based and non-conventional adsorbents, for the removal of malachite green, a widely used dye known for its toxic and carcinogenic properties. Carbon-based adsorbents encompass two main types: activated carbon and biochar, while non-conventional adsorbents refer to… More > Graphic Abstract

    Malachite Green Adsorption Using Carbon-Based and Non-Conventional Adsorbent Made from Biowaste and Biomass: A Review

  • Open Access

    ARTICLE

    Off-Design Simulation of a CSP Power Plant Integrated with a Waste Heat Recovery System

    T. E. Boukelia1,2,*, A. Bourouis1, M. E. Abdesselem3, M. S. Mecibah3

    Energy Engineering, Vol.120, No.11, pp. 2449-2467, 2023, DOI:10.32604/ee.2023.030183

    Abstract Concentrating Solar Power (CSP) plants offer a promising way to generate low-emission energy. However, these plants face challenges such as reduced sunlight during winter and cloudy days, despite being located in high solar radiation areas. Furthermore, their dispatch capacities and yields can be affected by high electricity consumption, particularly at night. The present work aims to develop an off-design model that evaluates the hourly and annual performances of a parabolic trough power plant (PTPP) equipped with a waste heat recovery system. The study aims to compare the performances of this new layout with those of the conventional Andasol 1 plant,… More >

  • Open Access

    ARTICLE

    Underwater Waste Recognition and Localization Based on Improved YOLOv5

    Jinxing Niu1,*, Shaokui Gu1, Junmin Du2, Yongxing Hao1

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2015-2031, 2023, DOI:10.32604/cmc.2023.040489

    Abstract With the continuous development of the economy and society, plastic pollution in rivers, lakes, oceans, and other bodies of water is increasingly severe, posing a serious challenge to underwater ecosystems. Effective cleaning up of underwater litter by robots relies on accurately identifying and locating the plastic waste. However, it often causes significant challenges such as noise interference, low contrast, and blurred textures in underwater optical images. A weighted fusion-based algorithm for enhancing the quality of underwater images is proposed, which combines weighted logarithmic transformations, adaptive gamma correction, improved multi-scale Retinex (MSR) algorithm, and the contrast limited adaptive histogram equalization (CLAHE)… More >

  • Open Access

    ARTICLE

    Effects of Biowaste-Derived Hydrochar on Anaerobic Digestion: Insights into Hydrochar Characteristics

    Hongqiong Zhang1,2,#, Xu Wang3,#, Zhaojing Qian4, Buchun Si1,4,*, Kai Jin5, Tengfei Wang5

    Journal of Renewable Materials, Vol.11, No.10, pp. 3647-3657, 2023, DOI:10.32604/jrm.2023.028438

    Abstract Hydrochar prepared with four typical biowastes, pine wood, food waste, digested sewage sludge, and Chlorella were applied for the promotion of anaerobic digestion. The gas production and substrate composition were analyzed associated with the hydrochar characteristics. The results suggested that Chlorella hydrochar (C-C) showed the highest cumulative yield of methane (approximately 345 mL) with high total organic carbon (TOC) removal efficiency and low volatile fatty acids (VAFs) concentration. Especially, food waste hydrochar (F-C) showed a poor effect on anaerobic digestion and aroused 1.4–1.6 g/L accumulation of VAFs, in which the toxic components may account for the low efficiency. The C-C… More >

  • Open Access

    ARTICLE

    Optimization of Mortar Compressive Strength Prepared with Waste Glass Aggregate and Coir Fiber Addition Using Response Surface Methodology

    Cut Rahmawati1,2,*, Lia Handayani3, Muhtadin4, Muhammad Faisal4, Muhammad Zardi1, S. M. Sapuan5, Agung Efriyo Hadi6, Jawad Ahmad7, Haytham F. Isleem8

    Journal of Renewable Materials, Vol.11, No.10, pp. 3751-3767, 2023, DOI:10.32604/jrm.2023.028987

    Abstract Waste Glass (WGs) and Coir Fiber (CF) are not widely utilized, even though their silica and cellulose content can be used to create construction materials. This study aimed to optimize mortar compressive strength using Response Surface Methodology (RSM). The Central Composite Design (CCD) was applied to determine the optimization of WGs and CF addition to the mortar compressive strength. Compressive strength and microstructure testing with Scanning Electron Microscope (SEM), Fourier-transform Infrared Spectroscopy (FT-IR), and X-Ray Diffraction (XRD) were conducted to specify the mechanical ability and bonding between the matrix, CF, and WGs. The results showed that the chemical treatment of… More > Graphic Abstract

    Optimization of Mortar Compressive Strength Prepared with Waste Glass Aggregate and Coir Fiber Addition Using Response Surface Methodology

  • Open Access

    ARTICLE

    Spatio-Temporal Characteristics of Heat Transfer of Methanation in Fluidized Bed for Pyrolysis and Gasification Syngas of Organic Solid Waste

    Danyang Shao1, Xiaojia Wang1,*, Delu Chen1, Fengxia An1,2

    Journal of Renewable Materials, Vol.11, No.10, pp. 3659-3680, 2023, DOI:10.32604/jrm.2023.029220

    Abstract Methanation is an effective way to efficiently utilize product gas generated from the pyrolysis and gasification of organic solid wastes. To deeply study the heat transfer and mass transfer mechanisms in the reactor, a successful three-dimensional comprehensive model has been established. Multiphase flow behavior and heat transfer mechanisms were investigated under reference working conditions. Temperature is determined by the heat release of the reaction and the heat transfer of the gas-solid flow. The maximum temperature can reach 951 K where the catalyst gathers. In the simulation, changes in the gas inlet velocity and catalyst flow rate were made to explore… More >

  • Open Access

    ARTICLE

    Inoculation of Chlorella and Food Waste Improves the Physio-Morphological Features of Red Pepper by Regulating Activating Antioxidant Defense System

    Sang-Mo Kang1,#, Shifa Shaffique1,#, Muhammad Imran2,#, Su-Mi Jeon3, Shabir Hussain Wani5, Muhammad Aaqil Khan4, Peter Odongkara1, Eun-Hae Kwon1, Yosep Kang1, Joon-Ik Son6, Won-Chan Kim1,*, In-Jung Lee1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.9, pp. 2699-2711, 2023, DOI:10.32604/phyton.2023.028224

    Abstract Food waste is recognized as a valuable source for potential agricultural applications to supply organic matter and nutrients to arable soil. However, the information on the combined application of food waste and the plant growth-promoting bacterial strain, Chlorella, related to plant metabolic features and sodium chloride content in arable soil is limited. The present study was conducted to investigate the exogenous application of food waste along with Chlorella, which improved the physio-morphological features of red pepper. Our results revealed that this combination enhanced the organic matter in the soil, ultimately improving the fertility rate of the soil, and the physio-morphological… More >

Displaying 11-20 on page 2 of 177. Per Page