Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (33)
  • Open Access

    ARTICLE

    Bilateral Coupled Epsilon Negative Metamaterial for Dual Band Wireless Communications

    Md Mhedi Hasan1, Mohammad Tariqul Islam1,*, Md Moniruzzaman1, Mohd Hafiz Baharuddin1, Norsuzlin Binti Mohd Sahar2, Md Samsuzzaman3

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1263-1281, 2022, DOI:10.32604/cmc.2022.021388 - 03 November 2021

    Abstract This work presents a dual band epsilon negative (ENG) metamaterial with a bilateral coupled split ring resonator (SRR) for use in C and X band wireless communication systems. The traditional split-ring resonator (SRR) has been amended with this engineered structure. The proposed metamaterial unit cell is realized on the 1.6 mm thick FR-4 printed media with a dimension of 10 × 10 mm2. The resonating patch built with a square split outer ring. Two interlinked inner rings are coupled vertically to the outer ring to extend its electrical length as well as to tune the resonance… More >

  • Open Access

    ARTICLE

    Hardware Chip Performance of CORDIC Based OFDM Transceiver for Wireless Communication

    Amit Kumar1, Adesh Kumar2,*, Geetam Singh Tomar3

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 645-659, 2022, DOI:10.32604/csse.2022.019449 - 09 September 2021

    Abstract The fourth-generation (4G) and fifth-generation (5G) wireless communication systems use the orthogonal frequency division multiplexing (OFDM) modulation techniques and subcarrier allocations. The OFDM modulator and demodulator have inverse fast Fourier transform (IFFT) and fast Fourier transform (FFT) respectively. The biggest challenge in IFFT/FFT processor is the computation of imaginary and real values. CORDIC has been proved one of the best rotation algorithms for logarithmic, trigonometric, and complex calculations. The proposed work focuses on the OFDM transceiver hardware chip implementation, in which 8-point to 1024-point IFFT and FFT are used to compute the operations in transmitter… More >

  • Open Access

    ARTICLE

    Improved Bi-Directional Three-Phase Single-Relay Selection Technique for Cooperative Wireless Communications

    Samer Alabed*, Issam Maaz, Mohammad Al-Rabayah

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 999-1015, 2022, DOI:10.32604/cmc.2022.019758 - 07 September 2021

    Abstract Single-relay selection techniques based on the max-min criterion can achieve the highest bit error rate (BER) performance with full diversity gain as compared to the state-of-the-art single-relay selection techniques. Therefore, in this work, we propose a modified max-min criterion by considering the differences among the close value channels of all relays while selecting the best relay node. The proposed criterion not only enjoys full diversity gain but also offers a significant improvement in the achievable coding gain as compared to the conventional one. Basically, in this article, an improved bi-directional three-phase single-relay selection technique using… More >

  • Open Access

    ARTICLE

    Design and Analysis of a Novel Antenna for THz Wireless Communication

    Omar A. Saraereh1,*, Luae Al-Tarawneh2, Ashraf Ali1, Amani M. Al Hadidi3

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 607-619, 2022, DOI:10.32604/iasc.2022.020216 - 03 September 2021

    Abstract The frequency range of the terahertz (THz) band is usually defined as 0.3~3.0 THz, and some scholars have also extended it to 0.1~10 THz. THz technology has the characteristics of low photon radiation energy and rich spectrum information, and the THz band contains the vibration and rotation resonance frequencies of many material macromolecules, which can realize fingerprint detection. Therefore, THz technology has great academic value and a wide range of applications in basic research and applied science. Application prospects, such as THz spectroscopy technology provides a new means for studying the interaction between electromagnetic waves… More >

  • Open Access

    ARTICLE

    Security Attacks on the IoT Network with 5G Wireless Communication

    Ghada Sultan Aljumaie, Ghada Hisham Alzeer, Sultan S. Alshamrani*

    Journal on Internet of Things, Vol.3, No.3, pp. 119-130, 2021, DOI:10.32604/jiot.2021.015900 - 16 December 2021

    Abstract The term Internet of Things has increased in popularity in recent years and has spread to be used in many applications around us, such as healthcare applications, smart homes and smart cities, IoT is a group of smart devices equipped with sensors that have the ability to calculate data, and carry out actions in the environment in which they are located, they are connected to each other through the Internet and recently it has become supported by 5G technology due to many advantages such as its ability to provide a fast connection, despite the efficiency More >

  • Open Access

    ARTICLE

    A Hybrid Scheme for Secure Wireless Communications in IoT

    Muhammad Irshad Nazeer1,2,*, Ghulam Ali Mallah1, Raheel Ahmed Memon2

    Intelligent Automation & Soft Computing, Vol.29, No.2, pp. 633-648, 2021, DOI:10.32604/iasc.2021.017771 - 16 June 2021

    Abstract Network Coding is a potential technology for the future wireless communications and Internet of Things (IoT) as it reduces the number of transmissions and offers energy efficiency. It is vulnerable to threat and attack that can harm intermediate nodes. Indeed, it exhibits an ability to incorporate security of transmitted data, yet a lot of work needs to be done to provide a safeguard from threats. The purpose of this study is to strengthen the existing Network Coding scheme with a set of generic requirements for Network Coding Protocols by adopting system models and a Genetic… More >

  • Open Access

    ARTICLE

    Power Allocation Strategy for Secret Key Generation Method in Wireless Communications

    Bin Zhang1, Muhammad Waqas2,3, Shanshan Tu2,*, Syed Mudassir Hussain4, Sadaqat Ur Rehman5

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2179-2188, 2021, DOI:10.32604/cmc.2021.016553 - 13 April 2021

    Abstract Secret key generation (SKG) is an emerging technology to secure wireless communication from attackers. Therefore, the SKG at the physical layer is an alternate solution over traditional cryptographic methods due to wireless channels’ uncertainty. However, the physical layer secret key generation (PHY-SKG) depends on two fundamental parameters, i.e., coherence time and power allocation. The coherence time for PHY-SKG is not applicable to secure wireless channels. This is because coherence time is for a certain period of time. Thus, legitimate users generate the secret keys (SKs) with a shorter key length in size. Hence, an attacker… More >

  • Open Access

    ARTICLE

    Comparative Design and Study of A 60 GHz Antenna for Body-Centric Wireless Communications

    Kaisarul Islam1, Tabia Hossain1, Mohammad Monirujjaman Khan1,*, Mehedi Masud2, Roobaea Alroobaea2

    Computer Systems Science and Engineering, Vol.37, No.1, pp. 19-32, 2021, DOI:10.32604/csse.2021.015528 - 05 February 2021

    Abstract In this paper performance of three different designs of a 60 GHz high gain antenna for body-centric communication has been evaluated. The basic structure of the antenna is a slotted patch consisting of a rectangular ring radiator with passive radiators inside. The variation of the design was done by changing the shape of these passive radiators. For free space performance, two types of excitations were used—waveguide port and a coaxial probe. The coaxial probe significantly improved both the bandwidth and radiation efficiency. The center frequency of all the designs was close to 60 GHz with… More >

  • Open Access

    ARTICLE

    A Novel Broadband Antenna Design for 5G Applications

    Omar A. Saraereh*

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 1121-1136, 2021, DOI:10.32604/cmc.2021.015066 - 12 January 2021

    Abstract Wireless communication is one of the rapidly-growing fields of the communication industry. This continuous growth motivates the antenna community to design new radiating structures to meet the needs of the market. The 5G wireless communication has received a lot of attention from both academia and industry and significant efforts have been made to improve different aspects, such as data rate, latency, mobility, reliability and QoS. Antenna design has received renewed attention in the last decade due to its potential applications in 5G, IoT, mmWave, and massive MIMO. This paper proposes a novel design of broadband… More >

  • Open Access

    ARTICLE

    MIMO-Terahertz in 6G Nano-Communications: Channel Modeling and Analysis

    Shahid Bashir1, Mohammed H. Alsharif2, Imran Khan3, Mahmoud A. Albreem4, Aduwati Sali5, Borhanuddin Mohd Ali5, Wonjong Noh6,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 263-274, 2021, DOI:10.32604/cmc.2020.012404 - 30 October 2020

    Abstract With the development of wireless mobile communication technology, the demand for wireless communication rate and frequency increases year by year. Existing wireless mobile communication frequency tends to be saturated, which demands for new solutions. Terahertz (THz) communication has great potential for the future mobile communications (Beyond 5G), and is also an important technique for the high data rate transmission in spatial information network. THz communication has great application prospects in military-civilian integration and coordinated development. In China, important breakthroughs have been achieved for the key techniques of THz high data rate communications, which is practically… More >

Displaying 21-30 on page 3 of 33. Per Page