Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,225)
  • Open Access

    ARTICLE

    A novel oxaliplatin-resistant gene signatures predicting survival of patients in colorectal cancer

    QIOU GU1, CHUILIN LAI1, XIAO GUAN1, JING ZHU2, TIAN ZHAN1, JIANPING ZHANG1,*

    BIOCELL, Vol.48, No.2, pp. 253-269, 2024, DOI:10.32604/biocell.2023.028336

    Abstract Objectives: Colorectal cancer (CRC) is a serious threat to human health worldwide. Oxaliplatin is a platinum analog and is widely used to treat CRC. However, resistance to oxaliplatin restricts its effectiveness and application while its target recognition and mechanism of action also remain unclear. Therefore, we aimed to develop an oxaliplatin-resistant prognostic model to clarify these aspects. Methods: We first obtained oxaliplatin-resistant and parental cell lines, and identified oxaliplatin-resistant genes using RNA sequencing (RNA-seq) and differential gene analysis. We then acquired relevant data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Cox regression and Least Absolute… More > Graphic Abstract

    A novel oxaliplatin-resistant gene signatures predicting survival of patients in colorectal cancer

  • Open Access

    ARTICLE

    M2 macrophages predicted the prognosis of breast cancer by combing a novel immune cell signature and promoted cell migration and invasion of cancer cells in vitro

    QI XIA1, XING CHEN2, QINGHUA MA3, XIANXIU WEN2,*

    BIOCELL, Vol.48, No.2, pp. 217-228, 2024, DOI:10.32604/biocell.2023.027414

    Abstract Background: Breast cancer (BC) is the most common cancer and the leading cause of cancer death in women. Immune features play an important role in improving the prognosis prediction of BC. However, while previous immune signatures consisted mainly of immune genes, immune cell-based signatures have been rarely reported. Methods: In this study, we report that a novel immune cell signature is effective in improving prognostic prediction by combining M2 macrophages. We identified 17 differentially infiltrating immune cells between cancer and normal groups. Prognostic features of the four immune cells identified by LASSO COX analysis showed good performance for survival risk… More >

  • Open Access

    ARTICLE

    Meiotic nuclear divisions 1 suppresses the proliferation and invasion of pancreatic cancer cells via regulating H2A.X variant histone

    DONGQIN WANG1,4, YAN SHI1, ZHIQIANG WANG4, JING ZHANG2, LUYAO WANG2, HONGYU MA3, SHUHUA SHI2, XIAOFU LIAN2, HUA HUANG4, XIAOJING WANG1,*, CHAOQUN LIAN4,*

    BIOCELL, Vol.48, No.1, pp. 111-122, 2024, DOI:10.32604/biocell.2023.046903

    Abstract Introduction: Among all malignant tumors of the digestive system, pancreatic carcinoma exhibits the highest mortality rate. Currently, prevention and effective treatment are urgent issues that need to be addressed. Methods: The study focused on meiotic nuclear divisions 1 (MND1), integrating data from the Gene Expression Profiling Interactive Analysis (GEPIA) database with prognostic survival analysis. Simultaneously, experiments at cellular level were employed to demonstrate the effect of MND1 on the proliferation and migration of PC. The small-molecule inhibitor of MND1 was used to suppress the migration of PC cells by knocking down MND1 using small interfering RNA (siRNA) in Patu-8988 and… More >

  • Open Access

    REVIEW

    Review on analytical technologies and applications in metabolomics

    XIN MENG*, YAN LIU, SHUJUN XU, LIANRONG YANG, RUI YIN

    BIOCELL, Vol.48, No.1, pp. 65-78, 2024, DOI:10.32604/biocell.2023.045986

    Abstract Over the past decade, the swift advancement of metabolomics can be credited to significant progress in technologies such as mass spectrometry, nuclear magnetic resonance, and multivariate statistics. Currently, metabolomics garners widespread application across diverse fields including drug research and development, early disease detection, toxicology, food and nutrition science, biology, prescription, and chinmedomics, among others. Metabolomics serves as an effective characterization technique, offering insights into physiological process alterations in vivo. These changes may result from various exogenous factors like environmental conditions, stress, medications, as well as endogenous elements including genetic and protein-based influences. The potential scientific outcomes gleaned from these insights… More > Graphic Abstract

    Review on analytical technologies and applications in metabolomics

  • Open Access

    ARTICLE

    Smad8 is involvement in follicular development via the regulation of granulosa cell growth and steroidogenesis in mice

    DAOLUN YU1, DEYONG SHE2, KAI GE1, LEI YANG1, RUINA ZHAN1, SHAN LU3,*, YAFEI CAI4,*

    BIOCELL, Vol.48, No.1, pp. 139-147, 2024, DOI:10.32604/biocell.2023.045884

    Abstract Background: SMAD family proteins (SMADs) are crucial transcription factors downstream of transforming growth factor beta (TGF-ß)/SMAD signaling pathways that have been reported to play a pivotal role in mammalian reproduction. However, the role of SMAD family member 8 (SMAD8, also known as SMAD9), a member of the SMAD family, in mammalian reproduction remains unclear. Methods: We employed RNA interference techniques to knock down Smad8 expression in mouse granulosa cells (GCs) to investigate the effects of Smad8 on GC growth and steroidogenesis. Results: Our findings revealed a significant decrease in the proliferative capacity and a substantial increase in the apoptosis rate… More >

  • Open Access

    REVIEW

    Crossroads: Pathogenic role and therapeutic targets of neutrophil extracellular traps in rheumatoid arthritis

    YANG LI1,2, JIAN LIU1,3,*, YUEDI HU1,2, CHENGZHI CONG1,2, YIMING CHEN1,2, QIAO ZHOU1,2

    BIOCELL, Vol.48, No.1, pp. 9-19, 2024, DOI:10.32604/biocell.2023.045862

    Abstract Rheumatoid arthritis (RA) is a prevalent autoimmune disease whose main features include chronic synovial inflammation, bone destruction, and joint degeneration. Neutrophils are often considered to be the first responders to inflammation and are a key presence in the inflammatory milieu of RA. Neutrophil extracellular traps (NETs), a meshwork of DNA-histone complexes and proteins released by activated neutrophils, are widely involved in the pathophysiology of autoimmune diseases, especially RA, in addition to playing a key role in the neutrophil innate immune response. NETs have been found to be an important source of citrullinated autoantigen antibodies and inflammatory factor release, which can… More > Graphic Abstract

    Crossroads: Pathogenic role and therapeutic targets of neutrophil extracellular traps in rheumatoid arthritis

  • Open Access

    REVIEW

    New insight into the role of exosomes in idiopathic membrane nephropathy

    JIANHONG LIU1,#, KAI HE2,#, HAN WANG3,#, XIAOHONG CHENG1,*

    BIOCELL, Vol.48, No.1, pp. 21-32, 2024, DOI:10.32604/biocell.2023.045631

    Abstract Exosomes, nanoscale extracellular vesicles (EVs) derived from the invagination of the endosomal membrane, are secreted by a majority of cell types. As carriers of DNA, mRNA, proteins, and microRNAs, exosomes are implicated in regulating biological activities under physiological and pathological conditions. Kidney-derived exosomes, which vary in origin and function, may either contribute to the pathogenesis of disease or represent a potential therapeutic resource. Membranous nephropathy (MN), an autoimmune kidney disease characterized by glomerular damage, is a predominant cause of nephrotic syndrome. Notably, MN, especially idiopathic membranous nephropathy (IMN), often results in end-stage renal disease (ESRD), affecting approximately 30% of patients… More > Graphic Abstract

    New insight into the role of exosomes in idiopathic membrane nephropathy

  • Open Access

    REVIEW

    An overview of autophagy in the differentiation of dental stem cells

    XITONG ZHAO, TIANJUAN JU, XINWEI LI, CHANGFENG LIU, LULU WANG*, LI-AN WU*

    BIOCELL, Vol.48, No.1, pp. 47-64, 2024, DOI:10.32604/biocell.2023.045591

    Abstract Dental stem cells (DSCs) have attracted significant interest as autologous stem cells since they are easily accessible and give a minimal immune response. These properties and their ability to both maintain self-renewal and undergo multi-lineage differentiation establish them as key players in regenerative medicine. While many regulatory factors determine the differentiation trajectory of DSCs, prior research has predominantly been based on genetic, epigenetic, and molecular aspects. Recent evidence suggests that DSC differentiation can also be influenced by autophagy, a highly conserved cellular process responsible for maintaining cellular and tissue homeostasis under various stress conditions. This comprehensive review endeavors to elucidate… More >

  • Open Access

    REVIEW

    In vitro engineered models of neurodegenerative diseases

    ZEHRA GÜL MORÇIMEN1, ŞEYMA TAŞDEMIR2, AYLIN ŞENDEMIR3,4,*

    BIOCELL, Vol.48, No.1, pp. 79-96, 2024, DOI:10.32604/biocell.2023.045361

    Abstract Neurodegeneration is a catastrophic process that develops progressive damage leading to functional and structural loss of the cells of the nervous system and is among the biggest unavoidable problems of our age. Animal models do not reflect the pathophysiology observed in humans due to distinct differences between the neural pathways, gene expression patterns, neuronal plasticity, and other disease-related mechanisms in animals and humans. Classical in vitro cell culture models are also not sufficient for pre-clinical drug testing in reflecting the complex pathophysiology of neurodegenerative diseases. Today, modern, engineered techniques are applied to develop multicellular, intricate in vitro models and to… More >

  • Open Access

    ARTICLE

    Inhibition of proliferation, migration, and invasiveness of bladder cancer cells through SAPCD2 knockdown

    CHONG SHEN, JIAJUN YAN*, YU REN, ZHIRONG ZHU, XIAOLONG ZHANG, SHUIXIANG TAO

    BIOCELL, Vol.48, No.1, pp. 97-109, 2024, DOI:10.32604/biocell.2023.045303

    Abstract Introduction: Bladder cancer (BC) has a high incidence and mortality rate worldwide. Suppressor anaphase-promoting complex domain containing 2 (SAPCDC2) is over-expressed in a variety of tumors. Objectives: This study investigated the effects of SAPCD2 knockdown on BC cells. Methods: T24 and UMUC3 cell models and the xenografted BC tumor model with SAPCD2 knockdown were established to observe the malignant phenotype of BC cells by cell counting kit-8 assay, colony formation test, wound healing, and Transwell assay, mRNA and proteins expressions were measured with quantitative real-time polymerase chain reaction, western blotting, and tissue immunohistochemistry. Lithium chloride agonist on the Wnt/β-catenin pathway… More > Graphic Abstract

    Inhibition of proliferation, migration, and invasiveness of bladder cancer cells through SAPCD2 knockdown

Displaying 41-50 on page 5 of 1225. Per Page