Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,722)
  • Open Access

    ARTICLE

    An Efficient Parallel MLPG Method for Poroelastic Models

    Luca Bergamaschi1,2, ,Ángeles Martínez2, Giorgio Pini2

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.3, pp. 191-216, 2009, DOI:10.3970/cmes.2009.049.191

    Abstract A meshless model, based on the Meshless Local Petrov-Galerkin (MLPG) approach, is developed and implemented in parallel for the solution of axi-symmetric poroelastic problems. The parallel code is based on a concurrent construction of the stiffness matrix by the processors and on a parallel preconditioned iterative method of Krylov type for the solution of the resulting linear system. The performance of the code is investigated on a realistic application concerning the prediction of land subsidence above a deep compacting reservoir. The overall code is shown to obtain a very high parallel efficiency (larger than 78% for the solution phase) and… More >

  • Open Access

    ARTICLE

    Energy-Conserving Local Time Stepping Based on High-Order Finite Elements for Seismic Wave Propagation Across a Fluid-Solid Interface

    Ronan Madec1, Dimitri Komatitsch1,2, Julien Diaz3

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.2, pp. 163-190, 2009, DOI:10.3970/cmes.2009.049.163

    Abstract When studying seismic wave propagation in fluid-solid models based on a numerical technique in the time domain with an explicit time scheme it is often of interest to resort to time substepping because the stability condition in the solid part of the medium can be more stringent than in the fluid. In such a case, one should enforce the conservation of energy along the fluid-solid interface in the time matching algorithm in order to ensure the accuracy and the stability of the time scheme. This is often not done in the available literature and approximate techniques that do not enforce… More >

  • Open Access

    ARTICLE

    An Accurate Algorithm for Evaluating Radiative Heat Transfer in a Randomly Packed Bed

    K. Han1, Y. T. Feng1, D. R. J. Owen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.2, pp. 143-162, 2009, DOI:10.3970/cmes.2009.049.143

    Abstract Motivated by Hottel's crossed-string method, this paper presents an accurate algorithm for the evaluation of the geometric view factors in a randomly packed bed of circular particles of various sizes. The radiative heat exchange can thus be predicted accurately. The solution procedure is illustrated and the solution accuracy is assessed via a numerical example. More >

  • Open Access

    ARTICLE

    A Computational Fluid Dynamics Study of a 2D Airfoil in Hovering Flight Under Ground Effect

    J.M.C.Pereira1, N.A.R.Maia1, J.C.F.Pereira1

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.2, pp. 113-142, 2009, DOI:10.3970/cmes.2009.049.113

    Abstract We present a 2D incompressible Navier-Stokes numerical simulation of a virtual model of an elliptic, or flat plate, foil in hovering flight configuration. Computations obtained with a general purpose solver were validated against reference data on forward flapping flight, normal or dragonfly hovering. The moving mesh technique allows airfoil translation and angular mesh movement accompaining the airfoil stroke motion. Close to the ground the mesh deforms to occupy the narrow computational domain formed between the airfoil and the ground. Computations have been carried out for some parameters, including the distances h between the foil center and the surface, h/c =… More >

  • Open Access

    ARTICLE

    An Improved Quadrilateral Flat Element with Drilling Degrees of Freedom for Shell Structural Analysis

    H.Nguyen-Van1, N.Mai-Duy1 and T.Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.2, pp. 81-112, 2009, DOI:10.3970/cmes.2009.049.081

    Abstract This paper reports the development of a simple and efficient 4-node flat shell element with six degrees of freedom per node for the analysis of arbitrary shell structures. The element is developed by incorporating a strain smoothing technique into a flat shell finite element approach. The membrane part is formulated by applying the smoothing operation on a quadrilateral membrane element using Allman-type interpolation functions with drilling DOFs. The plate-bending component is established by a combination of the smoothed curvature and the substitute shear strain fields. As a result, the bending and a part of membrane stiffness matrices are computed on… More >

  • Open Access

    ARTICLE

    Stability Loss in Nanotube Reinforced Composites

    A.N. Guz, V.A. Dekret1

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.1, pp. 69-80, 2009, DOI:10.3970/cmes.2009.049.069

    Abstract The two models in the three-dimensional theory of stability of the nanotube reinforced composite materials are discussed. The model of "infinite fibers" and the model of "short fibers" are considered. The primary objective is attended to "short fibers" model. All results are obtained in the framework of the three-dimensional linearized theory of stability of deformable bodies. More >

  • Open Access

    ARTICLE

    Dynamical Response of Two Axially Pre-Strained System Comprising of a Covering Layer and a Half Space to Rectangular Time-Harmonic Forces

    I. Emiroglu1, F. Tasci1, S. D. Akbarov2

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.1, pp. 47-68, 2009, DOI:10.3970/cmes.2009.049.047

    Abstract The time-harmonic dynamical stress field in the system comprising two axially pre-stressed covering layer and two axially pre-stressed half space was studied under the action of uniformly distributed forces on free face plane of the covering layer. It is assumed that the forces are distributed within the rectangular area. The study was conducted within the scope of the piecewise homogeneous body model with the use of three-dimensional theory of elastic waves in an initially stressed bodies. The materials of the layer and half-space were assumed to be isotropic and homogeneous. The corresponding three-dimensional boundary-value-contact problem was solved by applying double… More >

  • Open Access

    ARTICLE

    A Rate-Dependent Damage/Decohesion Model for Simulating Glass Fragmentation under Impact using the Material Point Method

    LumingShen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.1, pp. 23-46, 2009, DOI:10.3970/cmes.2009.049.023

    Abstract A bifurcation-based simulation procedure is proposed in this paper to explore the transition from localization to decohesion involved in the glass fragmentation under impact loading. In the proposed procedure, the onset and orientation of discontinuous failure of glass is identified from the bifurcation analysis based on a rate-dependent tensile damage model. The material point method, which does not involve fixed mesh connectivity, is employed to accommodate the multi-scale discontinuities associated with the fragmentation of glass using a simple interface treatment. A parametric study has been conducted to demonstrate the effects of specimen size and impact velocity on the evolution of… More >

  • Open Access

    ARTICLE

    Simulation of Water Loading On Deformable Structures Using SPH

    J.C.Campbell1, R.Vignjevic1, M.Patel1, S.Milisavljevic1

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.1, pp. 1-22, 2009, DOI:10.3970/cmes.2009.049.001

    Abstract This paper presents research towards the development of an analysis technique for predicting the interaction of large ocean waves with ships and offshore structures specifically with respect to the extent of deck submersion, impact loads and the level of structural damage caused. The coupled SPH - Finite Element approach is used, where the water is modeled with SPH and the structure with shell or continuum finite elements. Details of the approach are presented, including the SPH-FE contact and the fluid boundary conditions. Simulation results show that the method can correctly represent the behavior of a floating structure and the structural… More >

  • Open Access

    ARTICLE

    Constitutive Contact Laws in Structural Dynamics

    K.Willner 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.48, No.3, pp. 303-336, 2009, DOI:10.3970/cmes.2009.048.303

    Abstract The dynamic behavior of structures with joints is strongly influenced by the constitutive behavior within the contact areas. In this paper the influence of an elaborate constitutive contact model based on a rough surface model is investigated. The contact model is able to describe several effects like pressure dependent contact stiffness in normal and tangential direction as well as microslip effects. The corresponding constitutive contact laws are implemented in a finite element code. Numerical simulations are compared to experimental results of a clamped double-beam experiment. More >

Displaying 3161-3170 on page 317 of 3722. Per Page