Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,722)
  • Open Access

    ARTICLE

    A Novel Time Integration Method for Solving A Large System of Non-Linear Algebraic Equations

    Chein-Shan Liu1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.31, No.2, pp. 71-84, 2008, DOI:10.3970/cmes.2008.031.071

    Abstract Iterative algorithms for solving a nonlinear system of algebraic equations of the type: Fi(xj) = 0, i,j = 1,…,n date back to the seminal work of Issac Newton. Nowadays a Newton-like algorithm is still the most popular one due to its easy numerical implementation. However, this type of algorithm is sensitive to the initial guess of the solution and is expensive in the computations of the Jacobian matrix ∂ Fi/ ∂ xj and its inverse at each iterative step. In a time-integration of a system of nonlinear Ordinary Differential Equations (ODEs) of the type Bijxj + Fi = 0 where… More >

  • Open Access

    ARTICLE

    Numerical Simulation and Ventilation Efficiency of Bicycle Helmets

    T.Z. Desta1, G. De Bruyne1, J.-M. Aerts1, M. Baelmans2, D. Berckmans1

    CMES-Computer Modeling in Engineering & Sciences, Vol.31, No.2, pp. 61-70, 2008, DOI:10.3970/cmes.2008.031.061

    Abstract This paper demonstrates the use of the concept of the local mean age of air (LMAA) to quantify ventilation effectiveness under bicycle rider's safety helmets. The specific objective is to study the effect of helmet openings on the resulting ventilation effectiveness. To quantify ventilation effectiveness using the concept of LMAA, dynamic tracer gas data are necessary. The data were generated using a Computational Fluid Dynamics (CFD) model. Two bicycle helmet designs were used and compared with respect to ventilation performance. The result showed that the helmet with more openings had better performance especially at the back of the head. The… More >

  • Open Access

    ARTICLE

    A Cell-less BEM Formulation for 2D and 3D Elastoplastic Problems Using Particular Integrals

    A. Owatsiriwong1, B. Phansri1, K.H. Park1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.31, No.1, pp. 37-60, 2008, DOI:10.3970/cmes.2008.031.037

    Abstract This study deals with the particular integral formulation for two (2D) and three (3D) dimensional elastoplastic analyses. The elastostatic equation is used for the complementary solution. The particular integrals for displacement, stress and traction rates are derived by introducing the concept of global shape function to approximate an initial stress rate term of the inhomogeneous equation. The Newton-Raphson algorithm for the plastic multiplier is used to solve the system equation. The developed program is integrated with the pre- and post-processor. The collapse analyses of the smooth flexible strip, square and circular footings are given by comparing the numerical results of… More >

  • Open Access

    ARTICLE

    Vibration Analysis of Membranes with Arbitrary Sapes Using Discrete Singular Convolution

    Ömer Civalek 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.31, No.1, pp. 25-36, 2008, DOI:10.3970/cmes.2008.031.025

    Abstract In this paper, free vibration analysis of curvilinear or straight-sided quadrilateral membranes is presented. In the proposed approach, irregular physical domain is transformed into a rectangular domain by using geometric coordinate transformation. For demonstration of the accuracy and convergence of the method, some numerical examples are provided on membranes with different geometry such as skew, trapezoidal, sectorial, annular sectorial, and membranes with four curved edges. The results obtained by the DSC method are compared with those obtained by other numerical and analytical methods. More >

  • Open Access

    ARTICLE

    Large-Scale Parallel Finite Element Analyses of High Frequency Electromagnetic Field in Commuter Trains

    A. Takei1, S. Yoshimura1, H. Kanayama2

    CMES-Computer Modeling in Engineering & Sciences, Vol.31, No.1, pp. 13-24, 2008, DOI:10.3970/cmes.2008.031.013

    Abstract This paper presents large-scale finite element analyses of high frequency electromagnetic fields in commuter trains. The ADVENTURE_Magnetic is one of the main modules of the ADVENTURE system, which is an open source parallel finite element analyses system, and is able to solve eddy current and magnetostatic problems using the hierarchical domain decomposition method (HDDM) with an iterative linear algebraic solver. In this paper, we improve the module so as to solve a high frequency electromagnetic field of 500-1000 M[Hz]. A stationary Helmholtz equation for electromagnetic wave problems is solved taking an electric field as an unknown function. In this study,… More >

  • Open Access

    ARTICLE

    Algorithm of Dynamic Programming for Optimization of the Global Matching between Two Contours Defined by Ordered Points

    Francisco. P. M. Oliveira1, João Manuel R. S. Tavares1

    CMES-Computer Modeling in Engineering & Sciences, Vol.31, No.1, pp. 1-12, 2008, DOI:10.3970/cmes.2008.031.001

    Abstract This paper presents a new assignment algorithm with order restriction. Our optimization algorithm was developed using dynamic programming. It was implemented and tested to determine the best global matching that preserves the order of the points that define two contours to be matched. In the experimental tests done, we used the affinity matrix obtained via the method proposed by Shapiro, based on geometric modeling and modal matching. \newline The proposed algorithm revealed an optimum performance, when compared with classic assignment algorithms: Hungarian Method, Simplex for Flow Problems and LAPm. Indeed, the quality of the matching improved when compared with these… More >

  • Open Access

    ARTICLE

    Masonry Walls under Shear Test: a CM Modeling

    E. Ferretti1, E. Casadio, A. Di Leo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.30, No.3, pp. 163-190, 2008, DOI:10.3970/cmes.2008.030.163

    Abstract In this study, the Cell Method (CM) is applied in order to investigate the failure mechanisms of masonry walls under shear force. The direction of propagation is computed step-wise by the code, and the domain is updated by means of a propagation technique of intra-element nodal relaxation with re-meshing. The crack extension condition is studied in the Mohr/Coulomb plane, using the criterion of Leon. The main advantage of using the CM for numerical analyses of masonry is that the mortar, the bricks and the interfaces between mortar and bricks can be modeled without any need to use homogenization techniques, simply… More >

  • Open Access

    ARTICLE

    An Orphan-cell-free Overset Method Based on Meshless MLS Approximation for Coupled Analysis of Overlapping Finite Element Substructures

    Dong Ju Woo1, Jin Oh Yang1, Beom-Soo Kim1, Seungsoo Lee1, Jin Yeon Cho2

    CMES-Computer Modeling in Engineering & Sciences, Vol.30, No.3, pp. 149-162, 2008, DOI:10.3970/cmes.2008.030.149

    Abstract A new orphan-cell-free overset method is proposed to carry out the coupled analysis of overlapping finite element substructures. In the proposed overset method, the meshless MLS (Moving Least Squares) approximation is used to obtain the boundary data for the overlapped interface, whereas the Lagrange interpolation scheme has been commonly used in the conventional overset methods. The meshless character of MLS approximation makes it possible to overcome the problem of orphan-cell, which is often encountered in the conventional overset methods. Further, a new connectivity matrix solution procedure is developed to reduce the computational time in the coupled analysis as a part… More >

  • Open Access

    ARTICLE

    Meshless Method for Crack Analysis in Functionally Graded Materials with Enriched Radial Base Functions

    P.H. Wen1, M.H. Aliabadi2, Y.W. Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.30, No.3, pp. 133-148, 2008, DOI:10.3970/cmes.2008.030.133

    Abstract Based on the variation of potential energy, the element-free Galerkin method (MFGM) has been investigated for structures with crack on the basis of radial base function interpolation. An enriched radial base function is introduced to capture the singularities of stress at the crack tips. The advantages of the finite element method are remained in this method and there is a significant improvement of accuracy, particularly for the crack problems of fracture mechanics. The applications of the element-free Galerkin method with enriched radial base function to two-dimensional fracture mechanics in functionally graded materials have been presented and comparisons have been made… More >

  • Open Access

    ARTICLE

    Numerical Computation of Space Derivatives by the Complex-Variable-Differentiation Method in the Convolution Quadrature Method Based BEM Formulation

    A.I. Abreu1, W.J. Mansur1, D. Soares Jr1,2, J.A.M. Carrer3

    CMES-Computer Modeling in Engineering & Sciences, Vol.30, No.3, pp. 123-132, 2008, DOI:10.3970/cmes.2008.030.123

    Abstract This paper is concerned with the numerical computation of space derivatives of a time-domain (TD-) Boundary Element Method (BEM) formulation for the analysis of scalar wave propagation problems. In the present formulation, the Convolution Quadrature Method (CQM) is adopted, i.e., the basic integral equation of the TD-BEM is numerically substituted by a quadrature formula, whose weights are computed using the Laplace transform of the fundamental solution and a linear multi-step method. In order to numerically compute space derivatives, the present work properly transforms the quadrature weights of the CQM-BEM, adopting the so-called Complex-Variable-Differentiation Method (CVDM). Numerical examples are presented at… More >

Displaying 3331-3340 on page 334 of 3722. Per Page