Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24,057)
  • Open Access

    ARTICLE

    DNAJA4, DNAJB11 and DNAJC10 induce cell transformation by inhibiting p53 and oncogene-induced senescence

    HYEON JU LEE1, CHANG SEOP LEE1, SI HOON KIM1, SOOKYUNG KIM1, JEONG MI KIM1, SUN-WHA IM1, YU-JIN JUNG2, SEUNG-PYO HONG3, HYUNJUNG LEE3, JONG-IL KIM3,4,5, JEONG A. HAN1,*

    BIOCELL, Vol.48, No.10, pp. 1455-1464, 2024, DOI:10.32604/biocell.2024.054538 - 02 October 2024

    Abstract Objective: Transformation from normal cells to malignant cells is the basis for tumorigenesis. While this cell transformation is known to result from aberrant activation or inactivation of associated genes, these genes have not yet been fully identified. In addition, DNAJs, proteins with a J domain, are known to be molecular co-chaperones, but their cellular functions remain largely unexplored. In this context, we here identified DNAJA4, DNAJB11, and DNAJC10 as pro-transforming genes and elucidated their action mechanisms. Methods: Senescence-associated (SA)-β-galactosidase staining and western blotting were used to analyze cellular senescence and protein expression. Soft agar assay was used… More >

  • Open Access

    ARTICLE

    Lovastatin modulation of YAP/TAZ signaling on cardiomyocyte autophagy and mitochondrial damage in myocardial I/R injury

    KAITIAN ZHANG1,#, MINGZHU LI2,#,*, JIANPING ZHANG3, JINFENG LI2, KUNLANG LI2, HUANQIAN LU2, JINYAN LV2

    BIOCELL, Vol.48, No.10, pp. 1489-1501, 2024, DOI:10.32604/biocell.2024.053930 - 02 October 2024

    Abstract Objective: Studies have demonstrated that administering statins promptly following myocardial ischemia/reperfusion (MI/R) can confer cardioprotective benefits. This study investigates whether Lovastatin can modulate the Yes-associated protein/Transcriptional co-activator with PDZ-binding motif (YAP/TAZ) signaling pathway to mitigate cardiomyocyte injury caused by hypoxia/reoxygenation (H/R). Methods: The in vitro MI/R model was established by H/R in rat myocardial H9c2 cells, and the cells were pretreated with varying doses of Lovastatin before reoxygenation. The extent of cellular injury was evaluated by measuring the myocardial enzyme content and cell viability. The levels of oxidative stress and inflammatory factors were quantified by enzyme-linked… More > Graphic Abstract

    Lovastatin modulation of YAP/TAZ signaling on cardiomyocyte autophagy and mitochondrial damage in myocardial I/R injury

  • Open Access

    REVIEW

    Spliceosome-mediated RNA trans-splicing: a strategy for Huntington’s disease gene therapy

    QINGYANG ZHANG, SHUXIAN HUANG, DAN WENG*

    BIOCELL, Vol.48, No.10, pp. 1443-1453, 2024, DOI:10.32604/biocell.2024.053794 - 02 October 2024

    Abstract Huntington’s disease (HD) is a debilitating neurodegenerative disorder caused by an abnormal expansion of CAG repeats (Cytosine, Adenine, Guanine) in the huntingtin gene (HTT). This mutation leads to the production of a mutant huntingtin protein, resulting in neuronal dysfunction and cell death. Current treatments primarily focus on symptomatic relief and do not address the underlying genetic cause. This review explores spliceosome-mediated RNA trans-splicing (SMaRT) therapy as an innovative and potential approach for HD treatment. SMaRT leverages the cell’s natural splicing machinery to correct mutant mRNA, thereby reducing toxic protein levels while restoring functional protein production. We More >

  • Open Access

    REVIEW

    Pioneering a new era in Parkinson’s disease management through adipose-derived mesenchymal stem cell therapy

    MOHAMMAD-SADEGH LOTFI, FATEMEH B. RASSOULI*

    BIOCELL, Vol.48, No.10, pp. 1419-1428, 2024, DOI:10.32604/biocell.2024.053597 - 02 October 2024

    Abstract Parkinson’s disease (PD) is one of the fastest-growing neurodegenerative disorders worldwide. So far, PD treatments only offer little clinical relief and cannot reverse or stop the disease progression. Stem cell (SC) therapy is a rapidly evolving technology that holds significant promise for enhancing current therapeutic approaches. Adipose-derived mesenchymal SCs (AD-MSCs) have many features such as easy harvest with minimal invasive techniques, high plasticity, non-immunogenicity, and no ethical issues, which have made them suitable choices for clinical applications in regenerative research. AD-MSCs are ideal tools to treat PD, as they have the potential to differentiate into… More >

  • Open Access

    REVIEW

    Mitochondrial-epigenetic crosstalk as an integrative standpoint into gut microbiome dysbiosis and related diseases

    VINíCIUS AUGUSTO SIMãO1, LUIZ GUSTAVO DE ALMEIDA CHUFFA1, LEóN FERDER2, FELIPE INSERRA2, WALTER MANUCHA3,4,*

    BIOCELL, Vol.48, No.10, pp. 1429-1442, 2024, DOI:10.32604/biocell.2024.053478 - 02 October 2024

    Abstract The interplay between mitochondria, epigenetics, and the microbiota is intricately linked to both health and disease. Within our cells, a complex molecular dance occurs, where these components intertwine in a mesmerizing ballet that plays a decisive role in our health. Mitochondria, beyond being energy powerhouses, modulate nuclear gene expression through messengers like reactive oxidative stress (ROS) and calcium. Epigenetics, acting as the molecular conductor, regulates the expression of both nuclear and mitochondrial genes through modifications like DNA methylation. The intestinal microbiota itself produces short-chain fatty acids (SCFAs) that influence mitochondrial activity. SCFA-induced epigenetic modifications, like… More >

  • Open Access

    ARTICLE

    Tanshinone IIA inhibits NLRP3 activation and attenuates alveolar macrophage pyroptosis via the TREM2/β-catenin pathway

    MIN LIU1,*, XIA LI2, JUN LIU1, YU LIU1

    BIOCELL, Vol.48, No.10, pp. 1475-1487, 2024, DOI:10.32604/biocell.2024.053227 - 02 October 2024

    Abstract Background: Alveolar macrophage pyroptosis exacerbates inflammatory lung diseases, and tanshinone IIA is known for its anti-inflammatory properties. Thus, understanding how tanshinone IIA affects alveolar macrophage pyroptosis is essential. Methods: NR8383 cells were exposed to lipopolysaccharide (LPS) and adenosine triphosphate (ATP). We assessed cell viability, pyroptosis, and the expression of triggering receptors expressed on myeloid cells 2 (TREM2), p-β-catenin, β-catenin, and pyroptosis-related factors. We also examined the interaction between tanshinone IIA and TREM2. Results: Co-stimulation with LPS and ATP significantly reduced NR8383 cell viability, increased pyroptosis, and upregulated pyroptosis-associated factors. Treatment with tanshinone IIA mitigated these effects.… More >

  • Open Access

    REVIEW

    Neural stem cell-derived exosomes: a cell-free transplant for potential cure of neurological diseases

    JIAJUN HUANG1,#, WEI WANG1,#, WENTONG LIN2, HENGSEN CAI3, ZHIHAN ZHU1, WAQAS AHMED4, QIANKUN ZHANG1, JIALE LIU1, YIFAN ZHANG1, RONG LI1, ZHINUO LI1, AHSAN ALI KHAN5, DENG LU3, YONG HU6, LUKUI CHEN1,*

    BIOCELL, Vol.48, No.10, pp. 1405-1418, 2024, DOI:10.32604/biocell.2024.053148 - 02 October 2024

    Abstract Degeneration and death of nerve cells are inevitable with the occurrence and progression of nervous system disorders. Researchers transplanted neural stem cells into relevant areas, trying to solve the difficulty of neural cell loss by differentiating neural stem cells into various nerve cells. In recent years, however, studies have shown that transplanted neural stem cells help neural tissues regenerate and return to normal through paracrine action rather than just replacing cells. Exosomes are essential paracrine mediators, which can participate in cell communication through substance transmission. In this regard, this review mainly discusses the current research More >

  • Open Access

    ARTICLE

    Diosgenin inhibited podocyte pyroptosis in diabetic kidney disease by regulating the Nrf2/NLRP3 pathway

    YU TANG1, WENXIAO HU2,*, YAJUN PENG1, XIANGDONG LING2

    BIOCELL, Vol.48, No.10, pp. 1503-1516, 2024, DOI:10.32604/biocell.2024.052692 - 02 October 2024

    Abstract Background: Podocyte injury is crucial in diabetic kidney disease (DKD) progression, and the mechanism remains unclear. The previous studies indicated Diosgenin played a key role in inhibiting podocyte injury progression. However, more research is needed to explore Diosgenin in inhibiting-molecular mechanisms in the process of podocyte injury. Methods: The content of Diosgenin in HeShenwan was detected by High-Performance Liquid Chromatography-mass spectrometry (HPLC-MS) method. The podocyte injury model was constructed by high glucose (HG)-induced mpc5 cells. The Cell Counting Kit-8 (CCK-8) assay was utilized to evaluate the activity of mpc5 cells. Pyroptosis in mpc5 cells was… More > Graphic Abstract

    Diosgenin inhibited podocyte pyroptosis in diabetic kidney disease by regulating the Nrf2/NLRP3 pathway

  • Open Access

    ARTICLE

    SOX1 promotes osteosarcoma metastasis by modulating TSPAN12 expression

    HEYI LIU1,#, WENHAO CHENG2,#, JINGLIANG HE2, LUYAO ZHANG2, KADIRYA ASAN2, YULU CHEN2, JIAYUN WANG2, QI GAO2, SENG WANG2, ZIEN YU2, SHAOJIE MA2, LAN ZHU3,*, JING JI2,3,*

    BIOCELL, Vol.48, No.10, pp. 1465-1473, 2024, DOI:10.32604/biocell.2024.052670 - 02 October 2024

    Abstract Background: Osteosarcoma is the most common primary bone malignancy, with a strong tendency towards local invasion and metastasis. The SRY-Box Transcription Factor 1 (SOX1) gene, a member of the HMG-box family of DNA-binding transcription factors, plays a crucial role in embryogenesis and tumorigenesis. However, its role in osteosarcoma, particularly in relation to metastatic potential, is not well understood. Methods: The GSE14359 dataset containing five samples of conventional osteosarcoma and four samples of lung metastatic osteosarcoma was obtained from the Gene Expression Omnibus (GEO) database and analyzed for differential gene expression using the R language. Gene… More >

  • Open Access

    REVIEW

    Artificial Intelligence-Driven Vehicle Fault Diagnosis to Revolutionize Automotive Maintenance: A Review

    Md Naeem Hossain1, Md Mustafizur Rahman1,2,*, Devarajan Ramasamy1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 951-996, 2024, DOI:10.32604/cmes.2024.056022 - 27 September 2024

    Abstract Conventional fault diagnosis systems have constrained the automotive industry to damage vehicle maintenance and component longevity critically. Hence, there is a growing demand for advanced fault diagnosis technologies to mitigate the impact of these limitations on unplanned vehicular downtime caused by unanticipated vehicle breakdowns. Due to vehicles’ increasingly complex and autonomous nature, there is a growing urgency to investigate novel diagnosis methodologies for improving safety, reliability, and maintainability. While Artificial Intelligence (AI) has provided a great opportunity in this area, a systematic review of the feasibility and application of AI for Vehicle Fault Diagnosis (VFD)… More > Graphic Abstract

    Artificial Intelligence-Driven Vehicle Fault Diagnosis to Revolutionize Automotive Maintenance: A Review

Displaying 31-40 on page 4 of 24057. Per Page