Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,589)
  • Open Access

    ARTICLE

    Rectal Cancer Stages T2 and T3 Identification Based on Asymptotic Hybrid Feature Maps

    Shujing Sun1,3, Jiale Wu2, Jian Yao1, Yang Cheng4, Xin Zhang1, Zhihua Lu3, Pengjiang Qian1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 923-938, 2023, DOI:10.32604/cmes.2023.027356 - 23 April 2023

    Abstract Many existing intelligent recognition technologies require huge datasets for model learning. However, it is not easy to collect rectal cancer images, so the performance is usually low with limited training samples. In addition, traditional rectal cancer staging is time-consuming, error-prone, and susceptible to physicians’ subjective awareness as well as professional expertise. To settle these deficiencies, we propose a novel deep-learning model to classify the rectal cancer stages of T2 and T3. First, a novel deep learning model (RectalNet) is constructed based on residual learning, which combines the squeeze-excitation with the asymptotic output layer and new More >

  • Open Access

    ARTICLE

    An Intelligent Identification Approach of Assembly Interface for CAD Models

    Yigang Wang1, Hong Li1, Wanbin Pan1,*, Weijuan Cao1, Jie Miao1, Xiaofei Ai1, Enya Shen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 859-878, 2023, DOI:10.32604/cmes.2023.027320 - 23 April 2023

    Abstract Kinematic semantics is often an important content of a CAD model (it refers to a single part/solid model in this work) in many applications, but it is usually not the belonging of the model, especially for the one retrieved from a common database. Especially, the effective and automatic method to reconstruct the above information for a CAD model is still rare. To address this issue, this paper proposes a smart approach to identify each assembly interface on every CAD model since the assembly interface is the fundamental but key element of reconstructing kinematic semantics. First,… More >

  • Open Access

    ARTICLE

    Feature Preserving Parameterization for Quadrilateral Mesh Generation Based on Ricci Flow and Cross Field

    Na Lei1, Ping Zhang2, Xiaopeng Zheng3,*, Yiming Zhu3, Zhongxuan Luo3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 843-857, 2023, DOI:10.32604/cmes.2023.027296 - 23 April 2023

    Abstract We propose a new method to generate surface quadrilateral mesh by calculating a globally defined parameterization with feature constraints. In the field of quadrilateral generation with features, the cross field methods are well-known because of their superior performance in feature preservation. The methods based on metrics are popular due to their sound theoretical basis, especially the Ricci flow algorithm. The cross field methods’ major part, the Poisson equation, is challenging to solve in three dimensions directly. When it comes to cases with a large number of elements, the computational costs are expensive while the methods… More > Graphic Abstract

    Feature Preserving Parameterization for Quadrilateral Mesh Generation Based on Ricci Flow and Cross Field

  • Open Access

    ARTICLE

    Graph Convolutional Network-Based Repository Recommendation System

    Zhifang Liao1, Shuyuan Cao1, Bin Li1, Shengzong Liu2,*, Yan Zhang3, Song Yu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 175-196, 2023, DOI:10.32604/cmes.2023.027287 - 23 April 2023

    Abstract GitHub repository recommendation is a research hotspot in the field of open-source software. The current problems with the repository recommendation system are the insufficient utilization of open-source community information and the fact that the scoring metrics used to calculate the matching degree between developers and repositories are developed manually and rely too much on human experience, leading to poor recommendation results. To address these problems, we design a questionnaire to investigate which repository information developers focus on and propose a graph convolutional network-based repository recommendation system (GCNRec). First, to solve insufficient information utilization in open-source… More >

  • Open Access

    ARTICLE

    Numerical Stability and Accuracy of Contact Angle Schemes in Pseudopotential Lattice Boltzmann Model for Simulating Static Wetting and Dynamic Wetting

    Dongmin Wang1,2,*, Gaoshuai Lin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 299-318, 2023, DOI:10.32604/cmes.2023.027280 - 23 April 2023

    Abstract There are five most widely used contact angle schemes in the pseudopotential lattice Boltzmann (LB) model for simulating the wetting phenomenon: The pseudopotential-based scheme (PB scheme), the improved virtual-density scheme (IVD scheme), the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the fluid layer density above the wall (MPB-C scheme), the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the weighted average density of surrounding fluid nodes (MPB-W scheme) and the geometric formulation scheme (GF scheme). But the numerical stability and accuracy of the schemes for wetting simulation remain… More >

  • Open Access

    ARTICLE

    A Client Selection Method Based on Loss Function Optimization for Federated Learning

    Yan Zeng1,2,3, Siyuan Teng1, Tian Xiang4,*, Jilin Zhang1,2,3, Yuankai Mu5, Yongjian Ren1,2,3,*, Jian Wan1,2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 1047-1064, 2023, DOI:10.32604/cmes.2023.027226 - 23 April 2023

    Abstract Federated learning is a distributed machine learning method that can solve the increasingly serious problem of data islands and user data privacy, as it allows training data to be kept locally and not shared with other users. It trains a global model by aggregating locally-computed models of clients rather than their raw data. However, the divergence of local models caused by data heterogeneity of different clients may lead to slow convergence of the global model. For this problem, we focus on the client selection with federated learning, which can affect the convergence performance of the… More > Graphic Abstract

    A Client Selection Method Based on Loss Function Optimization for Federated Learning

  • Open Access

    ARTICLE

    SA-Model: Multi-Feature Fusion Poetic Sentiment Analysis Based on a Hybrid Word Vector Model

    Lingli Zhang1, Yadong Wu1,*, Qikai Chu2, Pan Li2, Guijuan Wang3,4, Weihan Zhang1, Yu Qiu1, Yi Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 631-645, 2023, DOI:10.32604/cmes.2023.027179 - 23 April 2023

    Abstract Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing, ancient literature research, etc. However, the existing research on sentiment analysis is relatively small. It does not effectively solve the problems such as the weak feature extraction ability of poetry text, which leads to the low performance of the model on sentiment analysis for Chinese classical poetry. In this research, we offer the SA-Model, a poetic sentiment analysis model. SA-Model firstly extracts text vector information and fuses it through Bidirectional encoder representation from transformers-Whole word masking-extension (BERT-wwm-ext) and Enhanced More >

  • Open Access

    ARTICLE

    Physics-Informed AI Surrogates for Day-Ahead Wind Power Probabilistic Forecasting with Incomplete Data for Smart Grid in Smart Cities

    Zeyu Wu1, Bo Sun1,2, Qiang Feng2,*, Zili Wang1, Junlin Pan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 527-554, 2023, DOI:10.32604/cmes.2023.027124 - 23 April 2023

    Abstract Due to the high inherent uncertainty of renewable energy, probabilistic day-ahead wind power forecasting is crucial for modeling and controlling the uncertainty of renewable energy smart grids in smart cities. However, the accuracy and reliability of high-resolution day-ahead wind power forecasting are constrained by unreliable local weather prediction and incomplete power generation data. This article proposes a physics-informed artificial intelligence (AI) surrogates method to augment the incomplete dataset and quantify its uncertainty to improve wind power forecasting performance. The incomplete dataset, built with numerical weather prediction data, historical wind power generation, and weather factors data,… More > Graphic Abstract

    Physics-Informed AI Surrogates for Day-Ahead Wind Power Probabilistic Forecasting with Incomplete Data for Smart Grid in Smart Cities

  • Open Access

    ARTICLE

    Residential Energy Consumption Forecasting Based on Federated Reinforcement Learning with Data Privacy Protection

    You Lu1,2,#,*, Linqian Cui1,2,#,*, Yunzhe Wang1,2, Jiacheng Sun1,2, Lanhui Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 717-732, 2023, DOI:10.32604/cmes.2023.027032 - 23 April 2023

    Abstract Most studies have conducted experiments on predicting energy consumption by integrating data for model training. However, the process of centralizing data can cause problems of data leakage. Meanwhile, many laws and regulations on data security and privacy have been enacted, making it difficult to centralize data, which can lead to a data silo problem. Thus, to train the model while maintaining user privacy, we adopt a federated learning framework. However, in all classical federated learning frameworks secure aggregation, the Federated Averaging (FedAvg) method is used to directly weight the model parameters on average, which may… More >

  • Open Access

    ARTICLE

    A Novel Detection Method for Pavement Crack with Encoder-Decoder Architecture

    Yalong Yang1,2,3, Wenjing Xu1,2,3, Yinfeng Zhu4, Liangliang Su1,2,3,*, Gongquan Zhang1,2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 761-773, 2023, DOI:10.32604/cmes.2023.027010 - 23 April 2023

    Abstract As a current popular method, intelligent detection of cracks is of great significance to road safety, so deep learning has gradually attracted attention in the field of crack image detection. The nonlinear structure, low contrast and discontinuity of cracks bring great challenges to existing crack detection methods based on deep learning. Therefore, an end-to-end deep convolutional neural network (AttentionCrack) is proposed for automatic crack detection to overcome the inaccuracy of boundary location between crack and non-crack pixels. The AttentionCrack network is built on U-Net based encoder-decoder architecture, and an attention mechanism is incorporated into the… More >

Displaying 9651-9660 on page 966 of 31589. Per Page