Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,808)
  • Open Access

    ARTICLE

    Prediction of Cuttings-Induced Annular-Pressure Loss in Extended-Reach Wells

    Long Wang1, Qingyun Shen1, Gui Wang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2023.029206

    Abstract Drill cuttings are broken bits of solid material removed from a borehole drilled by rotary, percussion, or auger methods and brought to the surface in the drilling mud. When these cuttings enter the annulus, they have an effect on the drilling fluid rheology and density, which is, in general, quite difficult to evaluate. By introducing an empirical correlation for the rheological properties of cuttings-laden drilling fluids, this study proposes a pressure-loss prediction method for an extended-reach well (ERW). After verifying the accuracy of this method, a case study is considered and a sensitivity analysis is conducted assuming a yield-power law… More >

  • Open Access

    ARTICLE

    Modified Elite Opposition-Based Artificial Hummingbird Algorithm for Designing FOPID Controlled Cruise Control System

    Laith Abualigah1,2,3,4,5,6,*, Serdar Ekinci7, Davut Izci7,8, Raed Abu Zitar9

    Intelligent Automation & Soft Computing, Vol., , DOI:10.32604/iasc.2023.040291

    Abstract Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability. This study proposes a novel approach for designing a fractional order proportional-integral-derivative (FOPID) controller that utilizes a modified elite opposition-based artificial hummingbird algorithm (m-AHA) for optimal parameter tuning. Our approach outperforms existing optimization techniques on benchmark functions, and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision. Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and… More >

  • Open Access

    ARTICLE

    The Impact of Inoculum Preparation Media on Pollutant Removal through Phycoremediation of Agricultural Drainage Water by Desmodesmus sp.

    Asmaa Salah1, Hoda Sany1, Abo El-Khair B. El-Sayed2, Reham M. El-Bahbohy1, Heba I. Mohamed3,*, Ayman Amin1,*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2023.031064

    Abstract Water is the most essential natural resource for the future development. Agriculture production is extensively water-dependent and a significant polluter of water resources. So, this work investigated the effect of two different preparation media [Bold’s Basal Medium (BBM) and Domiati cheese whey (DCW)] for agricultural drainage water (ADW) remediation. All treatments were incubated for 6 days. According to the results of biomass productivity, specific growth rate, photosynthetic pigments, and biochemical composition, Desmodesmus sp. can grow in drainage water without dilution. The two treatments significantly reduced the concentration of nitrate, phosphate, chemical oxygen demand, and sodium in ADW. Finally, using cheese… More >

  • Open Access

    ARTICLE

    Numerical Calculation of Transient Thermal Characteristics of Nozzle Flowmeter

    Xin Li1, Shaohan Zheng1,2, Yuliang Zhang1,*, Minfeng Lv3

    Frontiers in Heat and Mass Transfer, Vol., , DOI:10.32604/fhmt.2023.041778

    Abstract This article aims to reveal the transient thermal characteristics of the solid domain in a nozzle flowmeter when measuring fluids of varying temperatures. Based on finite element method, the transient numerical calculation of the thermal characteristics of each component of the nozzle flowmeter has been conducted. The research shows that: as the fluid passes through the flowmeter, the high heat flux area inside the nozzle flowmeter gradually transfer from the center of the nozzle to the inlet and outlet, as well as the pressure tapping points upstream and downstream; High thermal stress zones are present near the upstream and downstream… More >

  • Open Access

    ARTICLE

    Study on the Fractal Characteristics of Cavitation Shedding over a Twisted Hydrofoil

    Zilong Hu1, Weilong Guang1, Ran Tao1,2,*, Ruofu Xiao1,2, Di Zhu3

    Frontiers in Heat and Mass Transfer, Vol., , DOI:10.32604/fhmt.2023.041402

    Abstract Cavitation and cavitation erosion often occur and seriously threaten the safe and stable operation of hydraulic machinery. However, during the operation of hydraulic machinery, the cavitation flow field is often difficult to contact and measure, and the shedding and development characteristics of cavitation flow are unknown. This paper uses the Detached Eddy Simulation (DES) turbulence model and Zwart-Gerber-Belamri (ZGB) cavitation model to conduct numerical research on the cavitation flow of a twisted hydrofoil and verifies the effectiveness of numerical simulation by comparing it with experimental results. Then, based on the fractal dimension method, the number and fractal dimension of the… More >

  • Open Access

    ARTICLE

    Convolutional Neural Network Model for Fire Detection in Real-Time Environment

    Abdul Rehman, Dongsun Kim*, Anand Paul

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.036435

    Abstract Disasters such as conflagration, toxic smoke, harmful gas or chemical leakage, and many other catastrophes in the industrial environment caused by hazardous distance from the peril are frequent. The calamities are causing massive fiscal and human life casualties. However, Wireless Sensors Network-based adroit monitoring and early warning of these dangerous incidents will hamper fiscal and social fiasco. The authors have proposed an early fire detection system uses machine and/or deep learning algorithms. The article presents an Intelligent Industrial Monitoring System (IIMS) and introduces an Industrial Smart Social Agent (ISSA) in the Industrial SIoT (ISIoT) paradigm. The proffered ISSA empowers smart… More >

  • Open Access

    ARTICLE

    Quantitative Detection of Corrosion State of Concrete Internal Reinforcement Based on Metal Magnetic Memory

    Zhongguo Tang1, Haijin Zhuo1, Beian Li1, Xiaotao Ma2, Siyu Zhao2, Kai Tong2,*

    Structural Durability & Health Monitoring, Vol., , DOI:10.32604/sdhm.2023.026033

    Abstract Corrosion can be very harmful to the service life and several properties of reinforced concrete structures. The metal magnetic memory (MMM) method, as a newly developed spontaneous magnetic flux leakage (SMFL) non-destructive testing (NDT) technique, is considered a potentially viable method for detecting corrosion damage in reinforced concrete members. To this end, in this paper, the indoor electrochemical method was employed to accelerate the corrosion of outsourced concrete specimens with different steel bar diameters, and the normal components BBz and its gradient of the SMFL fields on the specimen surfaces were investigated based on the metal magnetic memory (MMM) method.… More >

  • Open Access

    ARTICLE

    CHRM3 is a novel prognostic factor of poor prognosis and promotes glioblastoma progression via activation of oncogenic invasive growth factors

    BIN ZHANG1,#, JIANYI ZHAO3,#, YONGZHI WANG2,#, HUA XU1, BO GAO1, GUANGNING ZHANG1, BIN HAN1, GUOHONG SONG1, JUNCHEN ZHANG1,*, WEI MENG1,*

    Oncology Research, Vol., , DOI:10.32604/or.2023.030425

    Abstract Glioblastoma (GBM) is the most aggressive cancer of the brain and has a high mortality rate due to the lack of effective treatment strategy. Clarification of molecular mechanisms of GBM’s characteristic invasive growth are urgently needed to improve the poor prognosis. Single-nuclear sequencing of primary and recurrent GBM samples revealed that levels of M3 muscarinic acetylcholine receptor (CHRM3) were significantly higher in the recurrent samples than in the primary samples. Moreover, immunohistochemical staining of an array of GBM samples showed that high levels of CHRM3 correlated with poor prognosis, consistent with The Cancer Genome Atlas database. Knockdown of CHRM3 inhibited… More >

  • Open Access

    ARTICLE

    Nitrogen-Doped Amorphous Carbon Homojunction from Palmyra Sugar as a Renewable Solar Cell

    Budhi Priyanto1,2,*, Imam Khambali1,2, Irma Septi Ardiani2, Khoirotun Nadhiyah4, Anna Zakiyatul Laila2, M. Chasrun Hasani1, Bima Romadhon3, Retno Asih2, Yoyok Cahyono2, Triwikantoro2, Darminto2,*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.028619

    Abstract An a-C/a-C:N junction, which used palmyra sugar as the carbon source and ammonium hydroxide (NH4OH) as the dopant source, was successfully deposited on the ITO glass substrate using the nano-spraying method. The current-voltage relationship of the junction was found to be a Schottky-like contact, and therefore the junction shows the characteristic rectifiers. This means the a-C and a-C:N are semiconductors with different types of conduction. Moreover, the samples showed an increase in current and voltage value when exposed to visible light (bright state) compared to the dark condition, thereby, indicating the creation of electron-hole pairs during the exposure. It was… More > Graphic Abstract

    Nitrogen-Doped Amorphous Carbon Homojunction from Palmyra Sugar as a Renewable Solar Cell

  • Open Access

    ARTICLE

    Effect of Al2O3 Nanoparticles on the Compression Ignition Performances and Emitted Pollutants of a Diesel Engine

    Noora S. Ekab1, Ahmed Q. Salam2, Ali O. Abd3, Miqdam T. Chaichan4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2023.028874

    Abstract To improve the performances of diesel engines and to reduce the pollutants they emit, aluminum oxide nanoparticles in varying quantities (50, 100, 150 ppm) have been added to conventional diesel fuel. The results of such experimental tests have revealed that the addition of nano-Al2O3 particles to the diesel fuel reduces its consumption by 0.488%, 1.02%, and 1.377%, respectively and increases the brake thermal efficiency by 1.4%, 2.6%, and 3.8%, respectively. The concentrations of undesired gases decrease accordingly by 1.5%, 1.7%, and 2.8% for HC and by 5.88%, 11.7%, and 17.6%, respectively, for CO. For the same percentages of nanoparticles, NOx… More >

Displaying 1171-1180 on page 118 of 2808. Per Page