Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26,783)
  • Open Access

    ARTICLE

    Prediction and Comparative Analysis of Rooftop PV Solar Energy Efficiency Considering Indoor and Outdoor Parameters under Real Climate Conditions Factors with Machine Learning Model

    Gökhan Şahin1,*, Ihsan Levent2, Gültekin Işık2, Wilfried van Sark1, Sabir Rustemli3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1215-1248, 2025, DOI:10.32604/cmes.2025.063193 - 11 April 2025

    Abstract This research investigates the influence of indoor and outdoor factors on photovoltaic (PV) power generation at Utrecht University to accurately predict PV system performance by identifying critical impact factors and improving renewable energy efficiency. To predict plant efficiency, nineteen variables are analyzed, consisting of nine indoor photovoltaic panel characteristics (Open Circuit Voltage (Voc), Short Circuit Current (Isc), Maximum Power (Pmpp), Maximum Voltage (Umpp), Maximum Current (Impp), Filling Factor (FF), Parallel Resistance (Rp), Series Resistance (Rs), Module Temperature) and ten environmental factors (Air Temperature, Air Humidity, Dew Point, Air Pressure, Irradiation, Irradiation Propagation, Wind Speed, Wind… More >

  • Open Access

    ARTICLE

    BIG-ABAC: Leveraging Big Data for Adaptive, Scalable, and Context-Aware Access Control

    Sondes Baccouri1,2,#,*, Takoua Abdellatif 3,#

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1071-1093, 2025, DOI:10.32604/cmes.2025.062902 - 11 April 2025

    Abstract Managing sensitive data in dynamic and high-stakes environments, such as healthcare, requires access control frameworks that offer real-time adaptability, scalability, and regulatory compliance. BIG-ABAC introduces a transformative approach to Attribute-Based Access Control (ABAC) by integrating real-time policy evaluation and contextual adaptation. Unlike traditional ABAC systems that rely on static policies, BIG-ABAC dynamically updates policies in response to evolving rules and real-time contextual attributes, ensuring precise and efficient access control. Leveraging decision trees evaluated in real-time, BIG-ABAC overcomes the limitations of conventional access control models, enabling seamless adaptation to complex, high-demand scenarios. The framework adheres to the… More >

  • Open Access

    ARTICLE

    SNN-IoMT: A Novel AI-Driven Model for Intrusion Detection in Internet of Medical Things

    Mourad Benmalek1,*,#,*, Abdessamed Seddiki2,#, Kamel-Dine Haouam1

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1157-1184, 2025, DOI:10.32604/cmes.2025.062841 - 11 April 2025

    Abstract The Internet of Medical Things (IoMT) connects healthcare devices and sensors to the Internet, driving transformative advancements in healthcare delivery. However, expanding IoMT infrastructures face growing security threats, necessitating robust Intrusion Detection Systems (IDS). Maintaining the confidentiality of patient data is critical in AI-driven healthcare systems, especially when securing interconnected medical devices. This paper introduces SNN-IoMT (Stacked Neural Network Ensemble for IoMT Security), an AI-driven IDS framework designed to secure dynamic IoMT environments. Leveraging a stacked deep learning architecture combining Multi-Layer Perceptron (MLP), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM), the model optimizes data management More >

  • Open Access

    ARTICLE

    Performance vs. Complexity Comparative Analysis of Multimodal Bilinear Pooling Fusion Approaches for Deep Learning-Based Visual Arabic-Question Answering Systems

    Sarah M. Kamel1,*, Mai A. Fadel2, Lamiaa Elrefaei1,3, Shimaa I. Hassan1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 373-411, 2025, DOI:10.32604/cmes.2025.062837 - 11 April 2025

    Abstract Visual question answering (VQA) is a multimodal task, involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate answer. In this paper, we propose a VQA system intended to answer yes/no questions about real-world images, in Arabic. To support a robust VQA system, we work in two directions: (1) Using deep neural networks to semantically represent the given image and question in a fine-grained manner, namely ResNet-152 and Gated Recurrent Units (GRU). (2) Studying the role of the utilized multimodal bilinear… More >

  • Open Access

    ARTICLE

    Intrusion Detection in NSL-KDD Dataset Using Hybrid Self-Organizing Map Model

    Noveela Iftikhar1, Mujeeb Ur Rehman1, Mumtaz Ali Shah2, Mohammed J. F. Alenazi3, Jehad Ali4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 639-671, 2025, DOI:10.32604/cmes.2025.062788 - 11 April 2025

    Abstract Intrusion attempts against Internet of Things (IoT) devices have significantly increased in the last few years. These devices are now easy targets for hackers because of their built-in security flaws. Combining a Self-Organizing Map (SOM) hybrid anomaly detection system for dimensionality reduction with the inherited nature of clustering and Extreme Gradient Boosting (XGBoost) for multi-class classification can improve network traffic intrusion detection. The proposed model is evaluated on the NSL-KDD dataset. The hybrid approach outperforms the baseline line models, Multilayer perceptron model, and SOM-KNN (k-nearest neighbors) model in precision, recall, and F1-score, highlighting the proposed More >

  • Open Access

    ARTICLE

    A Privacy-Preserving Graph Neural Network Framework with Attention Mechanism for Computational Offloading in the Internet of Vehicles

    Aishwarya Rajasekar*, Vetriselvi Vetrian

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 225-254, 2025, DOI:10.32604/cmes.2025.062642 - 11 April 2025

    Abstract The integration of technologies like artificial intelligence, 6G, and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle applications. However, these advancements also generate a surge in data processing requirements, necessitating the offloading of vehicular tasks to edge servers due to the limited computational capacity of vehicles. Despite recent advancements, the robustness and scalability of the existing approaches with respect to the number of vehicles and edge servers and their resources, as well as privacy, remain a concern. In this paper, a lightweight… More >

  • Open Access

    ARTICLE

    Privacy-Aware Federated Learning Framework for IoT Security Using Chameleon Swarm Optimization and Self-Attentive Variational Autoencoder

    Saad Alahmari1,*, Abdulwhab Alkharashi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 849-873, 2025, DOI:10.32604/cmes.2025.062549 - 11 April 2025

    Abstract The Internet of Things (IoT) is emerging as an innovative phenomenon concerned with the development of numerous vital applications. With the development of IoT devices, huge amounts of information, including users’ private data, are generated. IoT systems face major security and data privacy challenges owing to their integral features such as scalability, resource constraints, and heterogeneity. These challenges are intensified by the fact that IoT technology frequently gathers and conveys complex data, creating an attractive opportunity for cyberattacks. To address these challenges, artificial intelligence (AI) techniques, such as machine learning (ML) and deep learning (DL),… More >

  • Open Access

    ARTICLE

    Fuzzy N-Bipolar Soft Sets for Multi-Criteria Decision-Making: Theory and Application

    Sagvan Y. Musa1,2, Baravan A. Asaad3,4,*, Hanan Alohali5, Zanyar A. Ameen6, Mesfer H. Alqahtani7

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 911-943, 2025, DOI:10.32604/cmes.2025.062524 - 11 April 2025

    Abstract This paper introduces fuzzy N-bipolar soft (FN-BS) sets, a novel mathematical framework designed to enhance multi-criteria decision-making (MCDM) processes under uncertainty. The study addresses a significant limitation in existing models by unifying fuzzy logic, the consideration of bipolarity, and the ability to evaluate attributes on a multinary scale. The specific contributions of the FN-BS framework include: (1) a formal definition and set-theoretic foundation, (2) the development of two innovative algorithms for solving decision-making (DM) problems, and (3) a comparative analysis demonstrating its superiority over established models. The proposed framework is applied to a real-world case More >

  • Open Access

    ARTICLE

    Advanced Machine Learning and Gene Expression Programming Techniques for Predicting CO2-Induced Alterations in Coal Strength

    Zijian Liu1, Yong Shi2, Chuanqi Li1, Xiliang Zhang3,*, Jian Zhou1, Manoj Khandelwal4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 153-183, 2025, DOI:10.32604/cmes.2025.062426 - 11 April 2025

    Abstract Given the growing concern over global warming and the critical role of carbon dioxide (CO2) in this phenomenon, the study of CO2-induced alterations in coal strength has garnered significant attention due to its implications for carbon sequestration. A large number of experiments have proved that CO2 interaction time (T), saturation pressure (P) and other parameters have significant effects on coal strength. However, accurate evaluation of CO2-induced alterations in coal strength is still a difficult problem, so it is particularly important to establish accurate and efficient prediction models. This study explored the application of advanced machine learning (ML)… More >

  • Open Access

    ARTICLE

    Improving Shallow Foundation Settlement Prediction through Intelligent Optimization Techniques

    Hadi Fattahi1, Hossein Ghaedi1, Danial Jahed Armaghani2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 747-766, 2025, DOI:10.32604/cmes.2025.062390 - 11 April 2025

    Abstract In contemporary geotechnical projects, various approaches are employed for forecasting the settlement of shallow foundations (Sm). However, achieving precise modeling of foundation behavior using certain techniques (such as analytical, numerical, and regression) is challenging and sometimes unattainable. This is primarily due to the inherent nonlinearity of the model, the intricate nature of geotechnical materials, the complex interaction between soil and foundation, and the inherent uncertainty in soil parameters. Therefore, these methods often introduce assumptions and simplifications, resulting in relationships that deviate from the actual problem’s reality. In addition, many of these methods demand significant investments of… More >

Displaying 371-380 on page 38 of 26783. Per Page