Advanced Search
Displaying 41-50 on page 5 of 15657. Per Page  

Articles / Online

  • Development of IoT-Based Condition Monitoring System for Bridges
  • Abstract As of April 2019, India has 1,42,126 kilometres of National Highways and 67,368 kilometres of railway tracks that reach even the most remote parts of the country. Bridges are critical for both passenger and freight movement in the country. Because bridges play such an important part in the transportation system, their safety and upkeep must be prioritized. Manual Condition Monitoring has the disadvantage of being sluggish, unreliable, and ineffi- cient. The Internet of Things has given structural monitoring a boost. Significant decreases in the cost of electronics and connection, together with the expansion of cloud platforms, have made it possible…
  • More
  •   Views:211       Downloads:54        Download PDF
  • Hydrochar Pelletization towards Solid Biofuel from Biowaste Hydrothermal Carbonization
  • Abstract Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to fact that moisture involved can be directly used as reaction media under subcritical-water region. With this, value-added utilization of hydrochar as solid fuel with high carbon and energy density is one of the important pathways for biomass conversion. In this review, the dewatering properties of hydrochar after the hydrothermal carbonization of biowaste, coalification degree with elemental composition and evolution, pelletization of hydrochar to enhance the mechanical properties and density, coupled with the combustion properties of hydrochar biofuel were discussed with various biomass and carbonization parameters. Potential applications for…
  • More
  •   Views:148       Downloads:50        Download PDF
  • Research Progress of Eco-Friendly Portland Cement Porous Concrete: A Review
  • Abstract With the great impetus of energy conservation and emission reduction policies in various countries, the proposal of concepts such as “Sponge City” and “Eco-City”, and the emphasis on restoration and governance of ecological environment day by day, portland cement porous concrete (PCPC), as a novel building material, has attracted more and more attention from scientific researchers and engineers. PCPC possesses the peculiar pore structure, which owns numerous functions like river embankment protection, vegetation greening as well as air-cleaning, and has been of wide application in different engineering fields. This paper reviews the salient properties of PCPC, detailedly expounds the research…
  • More
  •   Views:151       Downloads:58        Download PDF
  • Research on the Performance of Titanium Gypsum Concrete Based on Calcium-Silicon-Sulfur Ratio
  • Abstract Based on the high sulfur content in titanium gypsum, the concept of the calcium-silicon-sulfur (Ca/Si/S) ratio was proposed. The Ca/Si/S ratio of concrete was adjusted by changing the titanium gypsum, fly ash, and cement content. The effects of different Ca/Si/S ratios on the mechanical properties, hydration products, and concrete microstructure were investigated by nuclear magnetic resonance, uniaxial compression, and scanning electron microscopy. The result shows: (1) The compressive strength of concrete mixed with titanium gypsum increases first and then decreases with the Ca/Si/S ratio decrease. When the Ca/Si/S ratio is 1:0.85:0.10, the strength reaches the peak and is lower than…
  • More
  •   Views:134       Downloads:52        Download PDF
  • Research on the Bending Impact Resistance and Transverse Fracture Characteristics of Bamboo under the Action of Falling Weight
  • Abstract Drop weight impact tester was used to accurately measure the bending impact resistance of various parts of Phyllostachys edulis, commonly known as moso bamboo, with a growth cycle of 3–8 years. Cellulose crystallinity in the bottom (B), middle (M) and top (T) of bamboo at different ages was calculated using peak height analysis in X-ray diffraction. Heatmap of Spearman correlation analysis was used to represent the correlation between chemical composition and impact mechanics. The breaking load (BL), fracture energy (FE) and impact deflection (ID) of 3–8-yearold bamboo were found to be in the range of ~670–2120 N, ~5.17–15.55 J, and…
  • More
  •   Views:211       Downloads:70        Download PDF
  • A Primary Study on Mechanical Properties of Heat-Treated Wood via in-situ Synthesis of Calcium Carbonate
  • Abstract This study aims to improve the value of fast-growing wood and extend the heat-treated wood utilization using inorganic calcium carbonate (CaCO3) crystals via an in-situ synthesis method. CaCl2 and Na2CO3 solutions with a concentration ratio of 1:1 were successively introduced into the thermally modified poplar wood obtained by steam heat treatment (HT) at 200°C for 1.5 and 3 h, resulting in the in-situ synthesis of CaCO3 crystals inside the heat-treated wood. The filling effect was best at the concentration of 1.2 mol/L. CaCO3 was uniformly distributed in the cell cavities of the heat-treated wood, and some of the crystals were…
  • More
  •   Views:362       Downloads:98        Download PDF
  • Effects of Strain Rate and Fiber Content on the Dynamic Mechanical Properties of Sisal Fiber Cement-Based Composites
  • Abstract In this paper, a split Hopkinson pressure bar (SHPB) was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites (SFRCCs), and the microscopic damage evolution of the composites was analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS). The results show that the addition of sisal fibers improves the impact resistance of cement-based composite materials. Compared with ordinary cement-based composites (OCCs), the SFRCCs demonstrate higher post-peak strength, ductility, and energy absorption capacity with higher fiber content. Moreover, the SFRCCs are strain rate sensitive materials, and their peak stress, ultimate strain, and energy integrals all…
  • More
  •   Views:445       Downloads:142        Download PDF
  • Numerical Simulation of Vacuum Preloading for Chemically Conditioned Municipal Sludge
  • Abstract Municipal sludge is a sedimentation waste produced during the wastewater process in sewage treatment plants. Among recent studies, pilot and field tests showed that chemical conditioning combined with vacuum preloading can effectively treat municipal sludge. To further understand the drainage and consolidation characteristics of the conditioning sludge during vacuum preloading, a large deformation nonlinear numerical simulation model based on the equal strain condition was developed to simulate and analyze the pilot and field tests, whereas the simulation results were not satisfactory. The results of the numerical analysis of the pilot test showed that the predicted consolidation degree was greater than…
  • More
  •   Views:142       Downloads:53        Download PDF
  • Characterization of Potential Cellulose from Hylocereus Polyrhizus (Dragon Fruit) peel: A Study on Physicochemical and Thermal Properties
  • Abstract The strict environmental regulations to overcome the drawbacks of consumption and disposal of non-renewable synthetic materials have motivated this investigation. The physical, chemical, morphological, and thermal properties of Hylocereus Polyrhizus peel (HPP) powder obtained from the raw materials were examined in this study. The physical properties analyzes of Hylocereus Polyrhizus peel (HPP) powder discovered that the moisture content, density, and water holding capacity were 9.70%, 0.45 g/cm3 , and 98.60%, respectively. Meanwhile, the chemical composition analysis of Hylocereus Polyrhizus peel (HPP) powder revealed that the powder was significantly high in cellulose contents (34.35%) from other bio-peel wastes. The crystallinity index…
  • More
  •   Views:229       Downloads:88        Download PDF
  • Simulation Analysis of Stress Field of Walnut Shell Composite Powder in Laser Additive Manufacturing Forming
  • Abstract A calculation model of stress field in laser additive manufacturing of walnut shell composite powder (walnut shell/Co-PES powder) was established. The DFLUX subroutine was used to implement the moveable application of a double ellipsoid heat source by considering the mechanical properties varying with temperature. The stress field was simulated by the sequential coupling method, and the experimental results were in good accordance with the simulation results. In addition, the distribution and variation of stress and strain field were obtained in the process of laser additive manufacturing of walnut shell composite powder. The displacement of laser additive manufacturing walnut shell composite…
  • More
  •   Views:326       Downloads:122        Download PDF
Displaying 41-50 on page 5 of 15657. Per Page