Enhancement of Compression Behavior and Customizable Energy Absorption Capacities of a Bio-Inspired Graded Metamaterial
Yifan Zhu1,2, Fengxiang Xu1,2,*, Zhen Zou1,2, Zhengpao Liu1,2, Xiaokun Dai1,2
The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-2, 2025, DOI:10.32604/icces.2025.010641
Abstract Conventional energy-absorbing mechanical metamaterials primarily dissipate energy through irreversible plastic deformation, buckling, or fragmentation. Their applications are limited by structural fractures caused by 45° shear stresses and their suitability only for single-use impact protection, lacking the capability for repeated energy absorption. Inspired by the cancellous bone of the human skull, a Tangent Arc Curve Structure (TACS) was proposed in this study, followed by the modeling and fabrication of four types of 3D-TACSs: tensile, tensile-rotational, orthogonal, and diagonal. The shear resistance and repeatable energy absorption capabilities of TACS were systematically investigated through theoretical analysis, compression experiments,… More >