Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,027)
  • Open Access

    ARTICLE

    Estimated Ultimate Recovery and Productivity of Deep Shale Gas Horizontal Wells

    Haijie Zhang1, Haifeng Zhao2, Ming Jiang3,*, Junwei Pu1, Yuanping Luo1, Weiming Chen1, Tongtong Luo1,4, Zhiqiang Li5, Xinan Yu6

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 221-232, 2025, DOI:10.32604/fdmp.2024.053496 - 24 January 2025

    Abstract Pressure control in deep shale gas horizontal wells can reduce the stress sensitivity of hydraulic fractures and improve the estimated ultimate recovery (EUR). In this study, a hydraulic fracture stress sensitivity model is proposed to characterize the effect of pressure drop rate on fracture permeability. Furthermore, a production prediction model is introduced accounting for a non-uniform hydraulic fracture conductivity distribution. The results reveal that increasing the fracture conductivity leads to a rapid daily production increase in the early stages. However, above 0.50 D·cm, a further increase in the fracture conductivity has a limited effect on More >

  • Open Access

    ARTICLE

    Modeling Thermophysical Properties of Hybrid Nanofluids: Foundational Research for Future Photovoltaic Thermal Applications

    Chakar Khadija*, El Mouden Mahmoud, Hajjaji Abdelowahed

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 61-70, 2025, DOI:10.32604/fdmp.2024.053458 - 24 January 2025

    Abstract The primary objective of this study is to develop an innovative theoretical model to accurately predict the thermophysical properties of hybrid nanofluids designed to enhance cooling in solar panel applications. This research lays the groundwork for our future studies, which will focus on photovoltaic thermal applications. These nanofluids consist of water and nanoparticles of alumina (Al2O3), titanium dioxide (TiO2), and copper (Cu), exploring volumetric concentrations ranging from 0% to 4% for each type of nanoparticle, and up to 10% for total mixtures. The developed model accounts for complex interactions between the nanoparticles and the base fluid, More >

  • Open Access

    REVIEW

    Perspectives of Vertical Axis Wind Turbines in Cluster Configurations

    Ryan Randall1, Chunmei Chen1,*, Mesfin Belayneh Ageze2,3, Muluken Temesgen Tigabu4

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2657-2691, 2024, DOI:10.32604/fdmp.2024.058169 - 23 December 2024

    Abstract Vertical Axis Wind Turbines (VAWTs) offer several advantages over horizontal axis wind turbines (HAWTs), including quieter operation, ease of maintenance, and simplified construction. Surprisingly, despite the prevailing belief that HAWTs outperform VAWTs as individual units, VAWTs demonstrate higher power density when arranged in clusters. This phenomenon arises from positive wake interactions downstream of VAWTs, potentially enhancing the overall wind farm performances. In contrast, wake interactions negatively impact HAWT farms, reducing their efficiency. This paper extensively reviews the potential of VAWT clusters to increase energy output and reduce wind energy costs. A precise terminology is introduced More >

  • Open Access

    ARTICLE

    Investigation of Wellbore Temperature Dynamics during Cement Setting in Deepwater Shallow Formations

    Jing Li, Bo Ning*, Bin Li, Dezhi Qiu

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2927-2939, 2024, DOI:10.32604/fdmp.2024.057388 - 23 December 2024

    Abstract Offshore deepwater cementing generally faces more challenges than onshore cementing. Shallow formations in deepwater wells often exhibit low structural strength, high porosity, and are prone to shallow gas influx and hydrate formation. These factors require careful control of hydration heat. In this article, we examine the key factors influencing temperature fluctuations in the wellbore and develop a temperature model that accounts for the thermal effects related to cement slurry circulation and hydration. This model is then applied to a deepwater shallow formation cementing case study. The results show that: (1) When cement slurry is displaced More >

  • Open Access

    ARTICLE

    Analysis of Fluid-Structure Interaction during Fracturing with Supercritical CO2

    Jiarui Cheng1,*, Yirong Yang1, Sai Ye2, Yucheng Luo1, Bilian Peng1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2887-2906, 2024, DOI:10.32604/fdmp.2024.057056 - 23 December 2024

    Abstract During the implementation of CO2 fracturing for oil and gas development, the force transfer effect caused by the unsteady flow of high-pressure CO2 fluid can lead to forced vibration of the tubing and ensuing structural fatigue. In this study, a forced vibration analysis of tubing under CO2 fracturing conditions is carried out by taking into account the fluid-structure coupling and related interaction forces by means of the method of characteristics (MOC). The results show that for every 1 m3/min increase in pumping displacement, the fluid flow rate increases up to 3.67 m/s. The flow pressure in the… More > Graphic Abstract

    Analysis of Fluid-Structure Interaction during Fracturing with Supercritical CO<sub>2</sub>

  • Open Access

    ARTICLE

    Assessment of Carboniferous Volcanic Horizontal Wells after Fracturing Based on Gray Correlation, Hierarchical Analysis and Fuzzy Evaluation

    Junwei Han1, Guohua Li1, Wu Zhong1, Yuchen Yang1, Maoheng Li2,3, Zhiwei Chen2,3, Ruichang Ge2,3, Lijuan Huang2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2757-2773, 2024, DOI:10.32604/fdmp.2024.056130 - 23 December 2024

    Abstract A comprehensive method to evaluate the factors affecting the production capacity of horizontal wells in Carboniferous volcanic rocks after fracturing is investigated. A systematic approach combining gray correlation analysis, hierarchical analysis and fuzzy evaluation is proposed. In particular, first the incidence of reservoir properties and fracturing parameters on production capacity is assessed. These parameters include reservoir base geological parameters (porosity, permeability, oil saturation, waterproof height) as well as engineering parameters (fracture half-length, fracture height, fracture conductivity, fracture distance). Afterwards, a two-by-two comparison judgment matrix of sensitive parameters is constructed by means of hierarchical analysis, and More >

  • Open Access

    ARTICLE

    Enhancing Thermal Performance of Building Envelopes Using Hemp Wool and Wood Wool with Phase Change Materials

    Salma Kouzzi1,*, Mouniba Redah1, Souad Morsli2, Mohammed El Ganaoui3, Mohammed Lhassane Lahlaouti1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2741-2755, 2024, DOI:10.32604/fdmp.2024.055890 - 23 December 2024

    Abstract This study investigates the potential for enhancing the thermal performance of external walls insulation in warmer climates through the combination of phase change materials (PCMs) and bio-based materials, specifically hemp wool and wood wool. Experimental tests using the heat flow method (HFM), and numerical simulations with ANSYS Fluent software were conducted to assess the dynamic thermal distribution and fluid-mechanical aspects of phase change materials (PCMs) within composite walls. The results demonstrate a notable reduction in peak indoor temperatures, achieving a 58% reduction with hemp wool with a close 40% reduction with wood wool when combined More >

  • Open Access

    ARTICLE

    Numerical Investigation of Snow Prevention in the Bogie Region of High-Speed Trains with Active Blowing under Crosswind Conditions

    Yao Zhang1, Hong Lan1,3, Jiye Zhang1,*, Lu Cai2, Yuzhe Ma1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2789-2808, 2024, DOI:10.32604/fdmp.2024.055418 - 23 December 2024

    Abstract In this study, the unsteady Reynolds-averaged Navier–Stokes algorithm coupled with the Discrete Phase Model (DPM) was used to study the accumulation of snow in the bogie region of a high-speed train under crosswind conditions. Moreover, the impact of active blowing schemes on the airflow around the bogie and the dynamics and deposition of snow particles were also assessed. According to the results: in the crosswind environment, active blowing changes the flow field in the bogie area, reducing the flow of air coming from the windward side and bottom of the bogie. The trajectory of snow… More >

  • Open Access

    ARTICLE

    Analysis of Rotor-Seizure-Induced Pressure Rise in a Nuclear Reactor Primary Cooling Loop

    Haoyu Cui1, Congxin Yang1,2,*, Yanlei Guo1, Tianzhi Lv1, Sen Zhao1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2907-2926, 2024, DOI:10.32604/fdmp.2024.055301 - 23 December 2024

    Abstract Most of existing methods for the safety assessment of the primary cooling loop of nuclear reactors in conditions of reactor coolant pump (RCP) failure (rotor seizure accident) essentially rely on the combination of one-dimensional theory and experience. This study introduces a novel three-dimensional model of the ‘Hualong-1’ (HPR1000) primary loop and uses the method of matching the resistance characteristics of the tube to ensure that the main pump operates at the rated operating condition. In particular, the three-dimensional unsteady numerical calculation of the RCP behavior in the rotor-seizure accident condition is carried out in the More >

  • Open Access

    ARTICLE

    Influence of Rail Fastening System on the Aerodynamic Performance of Trains under Crosswind Conditions

    Yuzhe Ma, Jiye Zhang*, Jiawei Shi

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2843-2865, 2024, DOI:10.32604/fdmp.2024.055205 - 23 December 2024

    Abstract The large number and dense layout of rail fastening can significantly affect the aerodynamic performance of trains. Utilizing the Improved Delayed Detached Eddy Simulation (IDDES) approach based on the SST (Shear Stress Transport) k-ω turbulent model, this study evaluates the effects of the rail fastening system on the aerodynamic force, slipstream and train wake under crosswind conditions. The results indicate that in such conditions, compared to the model without rails, the rail and the fastening system reduce the drag force coefficient of the train by 1.69%, while the lateral force coefficients increase by 1.16% and… More >

Displaying 11-20 on page 2 of 1027. Per Page