Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (51)
  • Open Access

    ABSTRACT

    A study of surface force on self-assembled monolayer of bio-microchannel

    J.H. Horng1, C.C. Wei1, Y.L. Ye2, C.H. Huang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.1, pp. 9-18, 2010, DOI:10.3970/icces.2010.015.009

    Abstract In this paper, four kinds of biocompatible SAMs are used to improve adhesion property and fluorescence reaction property on specimen surfaces. The result of experiment shows that OTS film demonstrates contact angles are all larger than 100 degrees in different immersing time and it reveal the best hydrophobic property after 24 hours. The declination angle experiment demonstrates that the OTS film has best flowing property and same trend of friction coefficient; it indicates that the declination angle experiment can reveal the degree of microchannel adhesion property better than contact angle experiment. It can be found that the OTS film can… More >

  • Open Access

    ABSTRACT

    Mechanical insights into the physiological functions of intercellular adhesion proteins

    S.R.K Vedula1, T.S. Lim2, W. Hunziker3, C.T. Lim1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.13, No.1, pp. 29-30, 2009, DOI:10.3970/icces.2009.013.029

    Abstract The structural integrity as well as the regulation of paracellular diffusion of solutes across epithelial monolayers is critically regulated by the intercellular adhesion complex. The intercellular adhesion complex consists of a variety of proteins that perform different physiological functions. While proteins localizing at adherens junctions (nectins and e-cadherins) are important for initiating and stabilizing cell adhesion, proteins localizing at the tight junctions (occludin, claudins and junctional adhesion molecules) act as gates to regulate the diffusion of solutes across the epithelial monolayer. Despite significant advancement in the understanding of the biological roles of these cell adhesion proteins in regulating various cellular… More >

  • Open Access

    ARTICLE

    Toddy Palm (Borassus Flabellifer) Fruit Fibre Bundles as Reinforcement in Polylactide (PLA) Composites: An Overview About Fibre and Composite Characteristics

    Nina Graupner1,*, Koranat Narkpiban2,5, Thiprada Poonsawat3, Porntip Tooptompong4, Jörg Müssig1

    Journal of Renewable Materials, Vol.7, No.8, pp. 693-711, 2019, DOI:10.32604/jrm.2019.06785

    Abstract Toddy palm fruit have an apparent density below 0.8 g/cm³ and offer an interesting lightweight construction potential in polylactide (PLA) composites reinforced with 37 mass-% fibres. Single fibre bundles show similar mechanical properties compared with coir: tensile strength of 240 MPa, Young´s modulus of 3.8 GPa and an elongation at break of 31%. However, density and diameter (~ 50 μm) of fruit fibre bundles are significantly lower. The compression moulded composites have a density of 0.9 g/cm³ and achieved an unnotched Charpy impact strength of 12 kJ/m², a tensile strength of 25 MPa, Young’s modulus of 1.9 GPa and an… More >

  • Open Access

    ARTICLE

    Reactive Compatibilization of Short-Fiber Reinforced Poly(lactic acid) Biocomposites

    Phornwalan Nanthananon1, Manus Seadan2, Sommai Pivsa-Art3, Hiroyuki Hamada4, Supakij Suttiruengwong1,*

    Journal of Renewable Materials, Vol.6, No.6, pp. 573-583, 2018, DOI:10.32604/JRM.2018.00129

    Abstract Poor interfacial adhesion between biobased thermoplastics and natural fibers is recognized as a major drawback for biocomposites. To be applicable for the large-scale production, a simple method to handle is of importance. This work presented poly(lactic acid) (PLA) reinforced with short-fiber and three reactive agents including anhydride and epoxide groups were selected as compatibilizers. Biocomposites were prepared by one-step melt-mixing methods. The influence of reactive agents on mechanical, dynamic mechanical properties and morphology of PLA biocomposites were investigated. Tensile strength and storage modulus of PLA biocomposites incorporated with epoxide-based reactive agent was increased 13.9% and 37.4% compared to non-compatibilized PLA… More >

  • Open Access

    ARTICLE

    Fast Force Loading Disrupts Molecular Binding Stability in Human and Mouse Cell Adhesions

    Yunfeng Chen1,2,3,†,*, Jiexi Liao4,†, Zhou Yuan1, Kaitao Li4, Baoyu Liu4, Lining Arnold Ju4,5,6, Cheng Zhu1,2,4,*

    Molecular & Cellular Biomechanics, Vol.16, No.3, pp. 211-223, 2019, DOI:10.32604/mcb.2019.07267

    Abstract Force plays critical roles in cell adhesion and mechano-signaling, partially by regulating the dissociation rate, i.e., off-rate, of receptor-ligand bonds. However, the mechanism of such regulation still remains elusive. As a controversial topic of the field, when measuring the “off-rate vs. force” relation of the same molecular system, different dynamic force spectroscopy (DFS) assays (namely, force-clamp and force-ramp assays) often yield contradictive results. Such discrepancies hurdled our further understanding of molecular binding, and casted doubt on the existing theoretical models. In this work, we used a live-cell DFS technique, biomembrane force probe, to measure the single-bond dissociation in three receptor-ligand… More >

  • Open Access

    ARTICLE

    A Coupled Friction-Poroelasticity Model of Chimneying Shows that Confined Cells Can Mechanically Migrate Without Adhesions

    Solenne Mondésert-Deveraux1, *, Rachele Allena2, Denis Aubry1

    Molecular & Cellular Biomechanics, Vol.15, No.3, pp. 155-176, 2018, DOI: 10.3970/mcb.2018.03053

    Abstract Cell migration is the cornerstone of many biological phenomena such as cancer metastasis, immune response or organogenesis. Adhesion-based motility is the most renown and examined motility mode, but in an adhesion-free confined environment or simply to achieve a higher migration speed, cells can adopt a very interesting bleb-based migration mode called “chimneying”. This mode rests on the sharp synchronization between the active contraction of the cells uropod and the passive friction force between the cell and the confining surface. In this paper, we propose a one dimensional poroelastic model of chimneying which considers the active strains of the cell, but,… More >

  • Open Access

    ARTICLE

    Tumor Cell Extravasation Mediated by Leukocyte Adhesion is Shear Rate Dependent on IL-8 Signaling*

    Shile Liang, Meghan Hoskins, Cheng Dong

    Molecular & Cellular Biomechanics, Vol.7, No.2, pp. 77-91, 2010, DOI:10.3970/mcb.2010.007.077

    Abstract To complete the metastatic journey, cancer cells have to disseminate through the circulation and extravasate to distal organs. However, the extravasation process, by which tumor cells leave a blood vessel and invade the surrounding tissue from the microcirculation, remains poorly understood at the molecular level. In this study, tumor cell adhesion to the endothelium (EC) and subsequent extravasation were investigated under various flow conditions. Results have shown polymorphonuclear neutrophils (PMNs) facilitate melanoma cell adhesion to the EC and subsequent extravasation by a shear-rate dependent mechanism. Melanoma cell-PMN interactions are mediated by the binding between intercellular adhesion molecule-1 (ICAM-1) on melanoma… More >

  • Open Access

    REVIEW

    Mechanistic Insights into the Physiological Functions of Cell Adhesion Proteins Using Single Molecule Force Spectroscopy

    Vedula S.R.K.*, Lim T.S., Hunziker W., Lim C.T.§

    Molecular & Cellular Biomechanics, Vol.5, No.3, pp. 169-182, 2008, DOI:10.3970/mcb.2008.005.169

    Abstract Intercellular adhesion molecules play an important role in regulating several cellular processes such as a proliferation, migration and differentiation. They also play an important role in regulating solute diffusion across monolayers of cells. The adhesion characteristics of several intercellular adhesion molecules have been studied using various biochemical assays. However, the advent of single molecule force spectroscopy as a powerful tool to analyze the kinetics and strength of protein interactions has provided us with an opportunity to investigate these interactions at the level of a single molecule. The study of interactions involving intercellular adhesion molecules has gained importance because of the… More >

  • Open Access

    ARTICLE

    Adhesive Models to Understand the Sensitivity of Bio-Molecules to Environmental Signals

    Shaohua Chen*

    Molecular & Cellular Biomechanics, Vol.5, No.2, pp. 97-106, 2008, DOI:10.3970/mcb.2008.005.097

    Abstract Recently, contact mechanics has been widely used to get some understanding of the biological adhesion mechanisms, such as cell-cell adhesion, insects' adhesion and locomotion. JKR theory is usually adopted as a basis, in which the interaction of molecules is considered in contrast to the classical Hertz solution. In this paper, two problems are summarized, which may give some insights to cells or bio-molecules sensitivity to environmental signals: (1) cell reorientation on a stretched substrate; (2) spontaneous detachment between cells or bio-molecules under the variation of environmental signals. The intention here is only to illustrate the possibilities that contact mechanics may… More >

  • Open Access

    ARTICLE

    Stability of Molecular Adhesion Mediated by Confined Polymer Repellers and Ligand-Receptor Bonds

    Jizeng Wang*, Jin Qian*, Huajian Gao∗,†

    Molecular & Cellular Biomechanics, Vol.5, No.1, pp. 19-26, 2008, DOI:10.3970/mcb.2008.005.019

    Abstract Experiments have shown that stable adhesion of a variety of animal cells on substrates prepared with precisely controlled ligand distribution can be formed only if the ligand spacing is below 58 nm. To explain this phenomenon, here we propose a confined polymer model to study the stability of molecular adhesion mediated by polymer repellers and ligand-receptor bonds. In this model, both repellers and binders are treated as wormlike chains confined in a nanoslit, and the stability of adhesion is considered as a competition between attractive interactions of ligand-receptor binding and repulsive forces due to the size mismatch between repellers and… More >

Displaying 31-40 on page 4 of 51. Per Page