Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (453)
  • Open Access

    CORRECTION

    Correction: Breast Calcifications and Histopathological Analysis on Tumour Detection by CNN

    D. Banumathy1,*, Osamah Ibrahim Khalaf2, Carlos Andrés Tavera Romero3, P. Vishnu Raja4, Dilip Kumar Sharma5

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 863-866, 2024, DOI:10.32604/csse.2024.053657 - 20 May 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Transformation of MRI Images to Three-Level Color Spaces for Brain Tumor Classification Using Deep-Net

    Fadl Dahan*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 381-395, 2024, DOI:10.32604/iasc.2024.047921 - 21 May 2024

    Abstract In the domain of medical imaging, the accurate detection and classification of brain tumors is very important. This study introduces an advanced method for identifying camouflaged brain tumors within images. Our proposed model consists of three steps: Feature extraction, feature fusion, and then classification. The core of this model revolves around a feature extraction framework that combines color-transformed images with deep learning techniques, using the ResNet50 Convolutional Neural Network (CNN) architecture. So the focus is to extract robust feature from MRI images, particularly emphasizing weighted average features extracted from the first convolutional layer renowned for… More >

  • Open Access

    ARTICLE

    Blood Pressure Estimation with Phonocardiogram on CNN-Based Approach

    Kasidit Kokkhunthod1, Khomdet Phapatanaburi2, Wongsathon Pathonsuwan1, Talit Jumphoo1, Patikorn Anchuen3, Porntip Nimkuntod4, Monthippa Uthansakul1, Peerapong Uthansakul1,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1775-1794, 2024, DOI:10.32604/cmc.2024.049276 - 15 May 2024

    Abstract Monitoring blood pressure is a critical aspect of safeguarding an individual’s health, as early detection of abnormal blood pressure levels facilitates timely medical intervention, ultimately leading to a reduction in mortality rates associated with cardiovascular diseases. Consequently, the development of a robust and continuous blood pressure monitoring system holds paramount significance. In the context of this research paper, we introduce an innovative deep learning regression model that harnesses phonocardiogram (PCG) data to achieve precise blood pressure estimation. Our novel approach incorporates a convolutional neural network (CNN)-based regression model, which not only enhances its adaptability to… More >

  • Open Access

    ARTICLE

    RepBoTNet-CESA: An Alzheimer’s Disease Computer Aided Diagnosis Method Using Structural Reparameterization BoTNet and Cubic Embedding Self Attention

    Xiabin Zhang1,2, Zhongyi Hu1,2,*, Lei Xiao1,2, Hui Huang1,2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2879-2905, 2024, DOI:10.32604/cmc.2024.048725 - 15 May 2024

    Abstract Various deep learning models have been proposed for the accurate assisted diagnosis of early-stage Alzheimer’s disease (AD). Most studies predominantly employ Convolutional Neural Networks (CNNs), which focus solely on local features, thus encountering difficulties in handling global features. In contrast to natural images, Structural Magnetic Resonance Imaging (sMRI) images exhibit a higher number of channel dimensions. However, during the Position Embedding stage of Multi Head Self Attention (MHSA), the coded information related to the channel dimension is disregarded. To tackle these issues, we propose the RepBoTNet-CESA network, an advanced AD-aided diagnostic model that is capable… More >

  • Open Access

    ARTICLE

    FusionNN: A Semantic Feature Fusion Model Based on Multimodal for Web Anomaly Detection

    Li Wang1,2,3,*, Mingshan Xia1,2,*, Hao Hu1, Jianfang Li1,2, Fengyao Hou1,2, Gang Chen1,2,3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2991-3006, 2024, DOI:10.32604/cmc.2024.048637 - 15 May 2024

    Abstract With the rapid development of the mobile communication and the Internet, the previous web anomaly detection and identification models were built relying on security experts’ empirical knowledge and attack features. Although this approach can achieve higher detection performance, it requires huge human labor and resources to maintain the feature library. In contrast, semantic feature engineering can dynamically discover new semantic features and optimize feature selection by automatically analyzing the semantic information contained in the data itself, thus reducing dependence on prior knowledge. However, current semantic features still have the problem of semantic expression singularity, as… More >

  • Open Access

    ARTICLE

    Faster Region Convolutional Neural Network (FRCNN) Based Facial Emotion Recognition

    J. Sheril Angel1, A. Diana Andrushia1,*, T. Mary Neebha1, Oussama Accouche2, Louai Saker2, N. Anand3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2427-2448, 2024, DOI:10.32604/cmc.2024.047326 - 15 May 2024

    Abstract Facial emotion recognition (FER) has become a focal point of research due to its widespread applications, ranging from human-computer interaction to affective computing. While traditional FER techniques have relied on handcrafted features and classification models trained on image or video datasets, recent strides in artificial intelligence and deep learning (DL) have ushered in more sophisticated approaches. The research aims to develop a FER system using a Faster Region Convolutional Neural Network (FRCNN) and design a specialized FRCNN architecture tailored for facial emotion recognition, leveraging its ability to capture spatial hierarchies within localized regions of facial… More >

  • Open Access

    ARTICLE

    Automatic Finding of Brain-Tumour Group Using CNN Segmentation and Moth-Flame-Algorithm, Selected Deep and Handcrafted Features

    Imad Saud Al Naimi1,2,*, Syed Alwee Aljunid Syed Junid1, Muhammad lmran Ahmad1,*, K. Suresh Manic2,3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2585-2608, 2024, DOI:10.32604/cmc.2024.046461 - 15 May 2024

    Abstract Augmentation of abnormal cells in the brain causes brain tumor (BT), and early screening and treatment will reduce its harshness in patients. BT’s clinical level screening is usually performed with Magnetic Resonance Imaging (MRI) due to its multi-modality nature. The overall aims of the study is to introduce, test and verify an advanced image processing technique with algorithms to automatically extract tumour sections from brain MRI scans, facilitating improved accuracy. The research intends to devise a reliable framework for detecting the BT region in the two-dimensional (2D) MRI slice, and identifying its class with improved… More >

  • Open Access

    ARTICLE

    KurdSet: A Kurdish Handwritten Characters Recognition Dataset Using Convolutional Neural Network

    Sardar Hasen Ali*, Maiwan Bahjat Abdulrazzaq

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 429-448, 2024, DOI:10.32604/cmc.2024.048356 - 25 April 2024

    Abstract Handwritten character recognition (HCR) involves identifying characters in images, documents, and various sources such as forms surveys, questionnaires, and signatures, and transforming them into a machine-readable format for subsequent processing. Successfully recognizing complex and intricately shaped handwritten characters remains a significant obstacle. The use of convolutional neural network (CNN) in recent developments has notably advanced HCR, leveraging the ability to extract discriminative features from extensive sets of raw data. Because of the absence of pre-existing datasets in the Kurdish language, we created a Kurdish handwritten dataset called (KurdSet). The dataset consists of Kurdish characters, digits,… More >

  • Open Access

    ARTICLE

    Combined CNN-LSTM Deep Learning Algorithms for Recognizing Human Physical Activities in Large and Distributed Manners: A Recommendation System

    Ameni Ellouze1, Nesrine Kadri2, Alaa Alaerjan3,*, Mohamed Ksantini1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 351-372, 2024, DOI:10.32604/cmc.2024.048061 - 25 April 2024

    Abstract Recognizing human activity (HAR) from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases. Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not. Typically, smartphones and their associated sensing devices operate in distributed and unstable environments. Therefore, collecting their data and extracting useful information is a significant challenge. In this context, the aim of this paper is twofold: The first is to analyze human behavior based on the recognition of physical activities. Using the… More >

  • Open Access

    ARTICLE

    Sepsis Prediction Using CNNBDLSTM and Temporal Derivatives Feature Extraction in the IoT Medical Environment

    Sapiah Sakri1, Shakila Basheer1, Zuhaira Muhammad Zain1, Nurul Halimatul Asmak Ismail2,*, Dua’ Abdellatef Nassar1, Manal Abdullah Alohali1, Mais Ayman Alharaki1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1157-1185, 2024, DOI:10.32604/cmc.2024.048051 - 25 April 2024

    Abstract Background: Sepsis, a potentially fatal inflammatory disease triggered by infection, carries significant health implications worldwide. Timely detection is crucial as sepsis can rapidly escalate if left undetected. Recent advancements in deep learning (DL) offer powerful tools to address this challenge. Aim: Thus, this study proposed a hybrid CNNBDLSTM, a combination of a convolutional neural network (CNN) with a bi-directional long short-term memory (BDLSTM) model to predict sepsis onset. Implementing the proposed model provides a robust framework that capitalizes on the complementary strengths of both architectures, resulting in more accurate and timelier predictions. Method: The sepsis prediction… More >

Displaying 31-40 on page 4 of 453. Per Page