Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (156)
  • Open Access

    REVIEW

    Wood By-Products as UV Protection: A Consequence Review

    Naglaa Salem El‑Sayed, Mohamed Hasanin, Samir Kamel*

    Journal of Renewable Materials, Vol.12, No.4, pp. 699-720, 2024, DOI:10.32604/jrm.2024.049118 - 12 June 2024

    Abstract In recent decades, the ozone layer has suffered considerable damage, increasing the entry of ultraviolet (UV) light into the atmosphere and reaching the earth’s surface, negatively affecting life. Accordingly, researchers aimed to solve this problem by synthesizing advanced UV-shielding materials. On the other hand, developing an easy and green strategy to prepare functional materials with outstanding properties based on naturally abundant and environmentally friendly raw materials is highly desirable for sustainable development. Because biomass-derived materials are sustainable and biodegradable, they present a promising substitute for petroleum-based polymers. The three main structural constituents of the plant More > Graphic Abstract

    Wood By-Products as UV Protection: A Consequence Review

  • Open Access

    ARTICLE

    Artificial Neural Network Modeling for Predicting Thermal Conductivity of EG/Water-Based CNC Nanofluid for Engine Cooling Using Different Activation Functions

    Md. Munirul Hasan1, Md Mustafizur Rahman2,*, Mohammad Saiful Islam3, Wong Hung Chan4, Yasser M. Alginahi5, Muhammad Nomani Kabir6, Suraya Abu Bakar1, Devarajan Ramasamy2

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 537-556, 2024, DOI:10.32604/fhmt.2024.047428 - 20 May 2024

    Abstract A vehicle engine cooling system is of utmost importance to ensure that the engine operates in a safe temperature range. In most radiators that are used to cool an engine, water serves as a cooling fluid. The performance of a radiator in terms of heat transmission is significantly influenced by the incorporation of nanoparticles into the cooling water. Concentration and uniformity of nanoparticle distribution are the two major factors for the practical use of nanofluids. The shape and size of nanoparticles also have a great impact on the performance of heat transfer. Many researchers are… More > Graphic Abstract

    Artificial Neural Network Modeling for Predicting Thermal Conductivity of EG/Water-Based CNC Nanofluid for Engine Cooling Using Different Activation Functions

  • Open Access

    ARTICLE

    A Rapid Parameter of Enzyme-Treated Cellulosic Material Revealed by Reducing Sugar Release

    Verônica Távilla Ferreira Silva, Adriane Maria Ferreira Milagres*

    Journal of Renewable Materials, Vol.12, No.3, pp. 539-551, 2024, DOI:10.32604/jrm.2023.045726 - 11 April 2024

    Abstract This study was conducted to evaluate the effectiveness of enzymes in purifying and reducing the degree of polymerization of cellulose for the production of dissolving pulp. Our goal was to determine the contributions of xylanase (X) and endoglucanase (EG) in the treatment of pulp, specifically by quantifying the formation of soluble and insoluble reducing sugars using the dinitrosalycilic acid (DNS) test. Predominantly, the release of soluble reducing sugars (RSSol) was enhanced after xylanase treatment, while endoglucanase (EG) treatment led to changes in insoluble reducing sugars (RSIns). The maximum synergism was observed for RSIns when a… More > Graphic Abstract

    A Rapid Parameter of Enzyme-Treated Cellulosic Material Revealed by Reducing Sugar Release

  • Open Access

    ARTICLE

    Characterization and Selection of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunches for Strengthening Hydrogel Films

    Susi Susi1,2,*, Makhmudun Ainuri3,*, Wagiman Wagiman3, Mohammad Affan Fajar Falah3

    Journal of Renewable Materials, Vol.12, No.3, pp. 513-537, 2024, DOI:10.32604/jrm.2024.045586 - 11 April 2024

    Abstract Microcrystalline cellulose (MCC) is one of the cellulose derivatives produced as a result of the depolymerization of a part of cellulose to achieve high crystallinity. When implemented in other polymers, high crystallinity correlates with greater strength and stiffnes, but it can reduce the water-holding capacity. The acid concentration and hydrolysis time will affect the acquisition of crystallinity and water absorption capacity, both of which have significance as properties of hydrogel filler. The study aimed to evaluate the properties and select the MCC generated from varying the proportion of hydrochloric acid (HCl) and the appropriate hydrolysis… More > Graphic Abstract

    Characterization and Selection of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunches for Strengthening Hydrogel Films

  • Open Access

    ARTICLE

    Unraveling the Rheology of Nanocellulose Aqueous Suspensions: A Comprehensive Study on Biomass-Derived Nanofibrillated Cellulose

    Mingyue Miao1,#, Fei Wang1,#, Qing Li1, Longchen Tao1, Chenchen Dai1, Yu Liu1, Shujuan Han1, Wenshuai Chen1,*, Ping Lu2,*

    Journal of Renewable Materials, Vol.12, No.3, pp. 443-455, 2024, DOI:10.32604/jrm.2023.030412 - 11 April 2024

    Abstract The rheological properties of nanocellulose aqueous suspensions play a critical role in the development of nanocellulose-based bulk materials. High-crystalline, high-aspect ratio, and slender nanofibrillated cellulose (NFC) were extracted from four biomass resources. The cellulose nanofibrils and nanofibril bundles formed inter-connected networks in the NFC aqueous suspensions. The storage moduli of the suspensions with different concentrations were higher than their corresponding loss moduli. As the concentration increased, the storage and loss modulus of NFC dispersion increased. When the shear rate increased to a certain value, there were differences in the changing trend of the rheological behavior More > Graphic Abstract

    Unraveling the Rheology of Nanocellulose Aqueous Suspensions: A Comprehensive Study on Biomass-Derived Nanofibrillated Cellulose

  • Open Access

    ARTICLE

    Novel Sustainable Cellulose Acetate Based Biosensor for Glucose Detection

    M. F. Elkady1,2,*, E. M. El-Sayed2, Mahmoud Samy3, Omneya A. Koriem1, H. Shokry Hassan4,5

    Journal of Renewable Materials, Vol.12, No.2, pp. 369-380, 2024, DOI:10.32604/jrm.2023.046585 - 11 March 2024

    Abstract In this study, green zinc oxide (ZnO)/polypyrrole (Ppy)/cellulose acetate (CA) film has been synthesized via solvent casting. This film was used as supporting material for glucose oxidase (GOx) to sensitize a glucose biosensor. ZnO nanoparticles have been prepared via the green route using olive leaves extract as a reductant. ZnO/Ppy nanocomposite has been synthesized by a simple in-situ chemical oxidative polymerization of pyrrole (Py) monomer using ferric chloride (FeCl3) as an oxidizing agent. The produced materials and the composite films were characterized using X-ray diffraction analysis (XRD), scanning electron microscope (SEM), Fourier transform infrared (FTIR) and… More > Graphic Abstract

    Novel Sustainable Cellulose Acetate Based Biosensor for Glucose Detection

  • Open Access

    ARTICLE

    Folic Acid-Functionalized Nanocrystalline Cellulose as a Renewable and Biocompatible Nanomaterial for Cancer-Targeting Nanoparticles

    Thean Heng Tan1, Najihah Mohd Hashim2, Wageeh Abdulhadi Yehya Dabdawb1, Mochamad Zakki Fahmi3,*, Hwei Voon Lee1,*

    Journal of Renewable Materials, Vol.12, No.1, pp. 29-43, 2024, DOI:10.32604/jrm.2023.043449 - 23 January 2024

    Abstract The study focuses on the development of biocompatible and stable FA-functionalized nanocrystalline cellulose (NCC) as a potential drug delivery system for targeting folate receptor-positive cancer cells. The FA-functionalized NCCs were synthesized through a series of chemical reactions, resulting in nanoparticles with favorable properties for biomedical applications. The microstructural analysis revealed that the functionalized NCCs maintained their rod-shaped morphology and displayed hydrodynamic diameters suitable for evading the mononuclear phagocytic system while being large enough to target tumor tissues. Importantly, these nanoparticles possessed a negative surface charge, enhancing their stability and repelling potential aggregation. The binding specificity… More > Graphic Abstract

    Folic Acid-Functionalized Nanocrystalline Cellulose as a Renewable and Biocompatible Nanomaterial for Cancer-Targeting Nanoparticles

  • Open Access

    ARTICLE

    Preparation and Characterization of Biobased Dehydroabietyl Polyethylene Glycol Glycidyl Ether-Grafted Hydroxyethyl Cellulose with High Emulsifying Property

    Zhengqing Ding, Quan Yang, Xinyan Yan, Feng Gu, Xujuan Huang*, Zhaosheng Cai*

    Journal of Renewable Materials, Vol.12, No.1, pp. 103-117, 2024, DOI:10.32604/jrm.2023.029424 - 23 January 2024

    Abstract Dehydroabietyl polyethylene glycol glycidyl ether-grafted hydroxyethyl cellulose (HEC) polymer surfactant (DA(EO)5GE-g-HEC) was prepared using ring-opening polymerization with biobased rosin and hydroxyethyl cellulose as feedstocks. Dehydroabietyl polyethylene glycol glycidyl ether (DA(EO)5GE) was formed by condensation of dehydroabietyl alcohol polyoxyethylene ether (Rosin derivative: DA(EO)5H) and epichlorohydrin. The grafting degree of DA(EO)5GE-g-HEC was manipulated by adjusting the mass ratio of HEC and DA(EO)5GE and confirmed by EA. According to the formula, when m(HEC)/m(DA(EO)2GE) was 1:1~1:5, the grafting rate of DA(EO)5GE in DA(EO)5GE-g-HEC varied from 34.43% to 38.33%. The surface activity and foam properties of DA(EO)5GE-g-HEC aqueous solution were studied. The results showed that… More > Graphic Abstract

    Preparation and Characterization of Biobased Dehydroabietyl Polyethylene Glycol Glycidyl Ether-Grafted Hydroxyethyl Cellulose with High Emulsifying Property

  • Open Access

    ARTICLE

    Flame Retardant Material Based on Cellulose Scaffold Mineralized by Calcium Carbonate

    Jinshuo Wang, Lida Xing, Fulong Zhang, Chuanfu Liu*

    Journal of Renewable Materials, Vol.12, No.1, pp. 89-102, 2024, DOI:10.32604/jrm.2023.029057 - 23 January 2024

    Abstract Wood-based functional materials have developed rapidly. But the flammability significantly limits its further application. To improve the flame retardancy, the balsa wood was delignified by NaClO2 solution to create a cellulose scaffold, and then alternately immersed in CaCl2 ethanol solution and NaHCO3 aqueous solution under vacuum. The high porosity and wettability resulting from delignification benefited the following mineralization process, changing the thermal properties of balsa wood significantly. The organic-inorganic wood composite showed abundant CaCO3 spherical particles under scanning electron microscopy. The peak of the heat release rate of delignified balsa-CaCO3 was reduced by 33% compared to the native More > Graphic Abstract

    Flame Retardant Material Based on Cellulose Scaffold Mineralized by Calcium Carbonate

  • Open Access

    PROCEEDINGS

    Nanomechanics of Incipient Kink Defects Formed in Nanocellulose

    Rongzhuang Song1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09608

    Abstract Kink defects in nanocellulose are ubiquitous yet associated questions remain open regarding the unclear microstructure-mechanical property relationship. Various kink patterns without molecular-scale resolution result in bemusements of how nanocellulose forms different kinks and what the fundamental mechanisms of reversible and irreversible kinks are. In our atomic force microscopy images of mechanically treated cellulose nanofibrils, bent nanofibrils usually exhibit small curvatures while kinked nanofibrils feature sharp bends, in which kinks are conspicuous due to their promiscuous configurations. To identify the nanomechanics of incipient kink defects formed in nanocellulose, molecular dynamics simulations of cellulose nanocrystals (CNCs) under… More >

Displaying 31-40 on page 4 of 156. Per Page