Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (147)
  • Open Access

    ARTICLE

    Dynamic Spatial Focus in Alzheimer’s Disease Diagnosis via Multiple CNN Architectures and Dynamic GradNet

    Jasem Almotiri*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2109-2142, 2025, DOI:10.32604/cmc.2025.062923 - 16 April 2025

    Abstract The evolving field of Alzheimer’s disease (AD) diagnosis has greatly benefited from deep learning models for analyzing brain magnetic resonance (MR) images. This study introduces Dynamic GradNet, a novel deep learning model designed to increase diagnostic accuracy and interpretability for multiclass AD classification. Initially, four state-of-the-art convolutional neural network (CNN) architectures, the self-regulated network (RegNet), residual network (ResNet), densely connected convolutional network (DenseNet), and efficient network (EfficientNet), were comprehensively compared via a unified preprocessing pipeline to ensure a fair evaluation. Among these models, EfficientNet consistently demonstrated superior performance in terms of accuracy, precision, recall, and… More >

  • Open Access

    ARTICLE

    An Attention-Based CNN Framework for Alzheimer’s Disease Staging with Multi-Technique XAI Visualization

    Mustafa Lateef Fadhil Jumaili1,2, Emrullah Sonuç1,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2947-2969, 2025, DOI:10.32604/cmc.2025.062719 - 16 April 2025

    Abstract Alzheimer’s disease (AD) is a significant challenge in modern healthcare, with early detection and accurate staging remaining critical priorities for effective intervention. While Deep Learning (DL) approaches have shown promise in AD diagnosis, existing methods often struggle with the issues of precision, interpretability, and class imbalance. This study presents a novel framework that integrates DL with several eXplainable Artificial Intelligence (XAI) techniques, in particular attention mechanisms, Gradient-Weighted Class Activation Mapping (Grad-CAM), and Local Interpretable Model-Agnostic Explanations (LIME), to improve both model interpretability and feature selection. The study evaluates four different DL architectures (ResMLP, VGG16, Xception, More >

  • Open Access

    ARTICLE

    Multi-Scale Vision Transformer with Dynamic Multi-Loss Function for Medical Image Retrieval and Classification

    Omar Alqahtani, Mohamed Ghouse*, Asfia Sabahath, Omer Bin Hussain, Arshiya Begum

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2221-2244, 2025, DOI:10.32604/cmc.2025.061977 - 16 April 2025

    Abstract This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer (ViT) architectures and a dynamic multi-loss function. The multi-scale encoding significantly enhances the model’s ability to capture both fine-grained and global features, while the dynamic loss function adapts during training to optimize classification accuracy and retrieval performance. Our approach was evaluated on the ISIC-2018 and ChestX-ray14 datasets, yielding notable improvements. Specifically, on the ISIC-2018 dataset, our method achieves an F1-Score improvement of +4.84% compared to the standard ViT, with a precision increase of +5.46% More >

  • Open Access

    ARTICLE

    Efficient Bit-Plane Based Medical Image Cryptosystem Using Novel and Robust Sine-Cosine Chaotic Map

    Zeric Tabekoueng Njitacke1, Louai A. Maghrabi2, Musheer Ahmad3,*, Turki Althaqafi4

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 917-933, 2025, DOI:10.32604/cmc.2025.059640 - 26 March 2025

    Abstract This paper presents a high-security medical image encryption method that leverages a novel and robust sine-cosine map. The map demonstrates remarkable chaotic dynamics over a wide range of parameters. We employ nonlinear analytical tools to thoroughly investigate the dynamics of the chaotic map, which allows us to select optimal parameter configurations for the encryption process. Our findings indicate that the proposed sine-cosine map is capable of generating a rich variety of chaotic attractors, an essential characteristic for effective encryption. The encryption technique is based on bit-plane decomposition, wherein a plain image is divided into distinct… More >

  • Open Access

    ARTICLE

    DMHFR: Decoder with Multi-Head Feature Receptors for Tract Image Segmentation

    Jianuo Huang1,2, Bohan Lai2, Weiye Qiu3, Caixu Xu4, Jie He1,5,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4841-4862, 2025, DOI:10.32604/cmc.2025.059733 - 06 March 2025

    Abstract The self-attention mechanism of Transformers, which captures long-range contextual information, has demonstrated significant potential in image segmentation. However, their ability to learn local, contextual relationships between pixels requires further improvement. Previous methods face challenges in efficiently managing multi-scale features of different granularities from the encoder backbone, leaving room for improvement in their global representation and feature extraction capabilities. To address these challenges, we propose a novel Decoder with Multi-Head Feature Receptors (DMHFR), which receives multi-scale features from the encoder backbone and organizes them into three feature groups with different granularities: coarse, fine-grained, and full set.… More >

  • Open Access

    ARTICLE

    Semi-Supervised Medical Image Classification Based on Sample Intrinsic Similarity Using Canonical Correlation Analysis

    Kun Liu1, Chen Bao1,*, Sidong Liu2

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4451-4468, 2025, DOI:10.32604/cmc.2024.059053 - 06 March 2025

    Abstract Large amounts of labeled data are usually needed for training deep neural networks in medical image studies, particularly in medical image classification. However, in the field of semi-supervised medical image analysis, labeled data is very scarce due to patient privacy concerns. For researchers, obtaining high-quality labeled images is exceedingly challenging because it involves manual annotation and clinical understanding. In addition, skin datasets are highly suitable for medical image classification studies due to the inter-class relationships and the inter-class similarities of skin lesions. In this paper, we propose a model called Coalition Sample Relation Consistency (CSRC),… More >

  • Open Access

    ARTICLE

    Improving Fundus Detection Precision in Diabetic Retinopathy Using Derivative-Based Deep Neural Networks

    Asma Aldrees1, Hong Min2,*, Ashit Kumar Dutta3, Yousef Ibrahim Daradkeh4, Mohd Anjum5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2487-2511, 2025, DOI:10.32604/cmes.2025.061103 - 03 March 2025

    Abstract Fundoscopic diagnosis involves assessing the proper functioning of the eye’s nerves, blood vessels, retinal health, and the impact of diabetes on the optic nerves. Fundus disorders are a major global health concern, affecting millions of people worldwide due to their widespread occurrence. Fundus photography generates machine-based eye images that assist in diagnosing and treating ocular diseases such as diabetic retinopathy. As a result, accurate fundus detection is essential for early diagnosis and effective treatment, helping to prevent severe complications and improve patient outcomes. To address this need, this article introduces a Derivative Model for Fundus… More >

  • Open Access

    ARTICLE

    Novel Feature Extractor Framework in Conjunction with Supervised Three Class-XGBoost Algorithm for Osteosarcoma Detection from Whole Slide Medical Histopathology Images

    Tanzila Saba1, Muhammad Mujahid1, Shaha Al-Otaibi2, Noor Ayesha3, Amjad Rehman Khan1,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3337-3353, 2025, DOI:10.32604/cmc.2025.060163 - 17 February 2025

    Abstract Osteosarcomas are malignant neoplasms derived from undifferentiated osteogenic mesenchymal cells. It causes severe and permanent damage to human tissue and has a high mortality rate. The condition has the capacity to occur in any bone; however, it often impacts long bones like the arms and legs. Prompt identification and prompt intervention are essential for augmenting patient longevity. However, the intricate composition and erratic placement of osteosarcoma provide difficulties for clinicians in accurately determining the scope of the afflicted area. There is a pressing requirement for developing an algorithm that can automatically detect bone tumors with… More >

  • Open Access

    ARTICLE

    Secure Medical Image Retrieval Based on Multi-Attention Mechanism and Triplet Deep Hashing

    Shaozheng Zhang, Qiuyu Zhang*, Jiahui Tang, Ruihua Xu

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2137-2158, 2025, DOI:10.32604/cmc.2024.057269 - 17 February 2025

    Abstract Medical institutions frequently utilize cloud servers for storing digital medical imaging data, aiming to lower both storage expenses and computational expenses. Nevertheless, the reliability of cloud servers as third-party providers is not always guaranteed. To safeguard against the exposure and misuse of personal privacy information, and achieve secure and efficient retrieval, a secure medical image retrieval based on a multi-attention mechanism and triplet deep hashing is proposed in this paper (abbreviated as MATDH). Specifically, this method first utilizes the contrast-limited adaptive histogram equalization method applicable to color images to enhance chest X-ray images. Next, a… More >

  • Open Access

    ARTICLE

    Stochastic Augmented-Based Dual-Teaching for Semi-Supervised Medical Image Segmentation

    Hengyang Liu1, Yang Yuan1,*, Pengcheng Ren1, Chengyun Song1, Fen Luo2

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 543-560, 2025, DOI:10.32604/cmc.2024.056478 - 03 January 2025

    Abstract Existing semi-supervised medical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch. However, current copy-paste methods have three limitations: (1) training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information; (2) low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data; (3) the segmentation performance in low-contrast and local regions is less than optimal. We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy (SADT), which enhances feature diversity and learns high-quality features to overcome these problems. To be more… More >

Displaying 1-10 on page 1 of 147. Per Page