Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (68)
  • Open Access

    ARTICLE

    The antioxidant trolox inhibits aging and enhances prostaglandin E-2 secretion in mesenchymal stem cells

    XIAOXU ZHANG1,2, LIN ZHANG1, LIN DU3, HUIYAN SUN4, XIA ZHAO2, YANG SUN1, WEI WANG2,*, LISHENG WANG1,3,*

    BIOCELL, Vol.47, No.2, pp. 385-392, 2023, DOI:10.32604/biocell.2023.025203

    Abstract Mesenchymal stem cells (MSCs) have been widely used in regenerative medicine and clinical therapy due to their capabilities of proliferation, differentiation, and immune regulation. However, during in vitro expansion, MSCs are prone to aging, which largely limits their application. Prostaglandin E-2 (PGE-2) is a key effector secreted by MSCs to exert immunomodulatory effects. By screening the compound library for PGE-2 secretion, the antioxidant trolox was verified as a stimulator of MSCs to secrete PGE-2. The effect of antioxidant trolox on biological characteristics of MSCS, including aging, proliferation, and gene expression, was examined. The results demonstrated that trolox can resist aging,… More >

  • Open Access

    ARTICLE

    miR-103-3p regulates the differentiation of bone marrow mesenchymal stem cells in myelodysplastic syndrome

    NINGYU LI1,2,#, XIAOFANG CHEN2,#,§, SUXIA GENG2, PEILONG LAI2, LISI HUANG2, MINMING LI2, XIN HUANG2, CHENGXIN DENG2, YULIAN WANG2, JIANYU WENG2, XIN DU1,2,*

    BIOCELL, Vol.47, No.1, pp. 133-141, 2023, DOI:10.32604/biocell.2022.022021

    Abstract The pathogenesis of myelodysplastic syndrome (MDS) may be related to the abnormal expression of microRNAs (miRNAs), which could influence the differentiation capacity of mesenchymal stem cells (MSCs) towards adipogenic and osteogenic lineages. In this study, exosomes from bone marrow plasma were successfully extracted and identified. Assessment of miR-103-3p expression in exosomes isolated from BM in 34 MDS patients and 10 controls revealed its 0.52-fold downregulation in patients with MDS compared with controls (NOR) and was downregulated 0.55-fold in MDS-MSCs compared with NOR-MSCs. Transfection of MDS-MSCs with the miR-103-3p mimic improved osteogenic differentiation and decreased adipogenic differentiation in vitro, while inhibition… More >

  • Open Access

    ARTICLE

    Dexmedetomidine alleviates oxygen and glucose deprivation-induced apoptosis in mesenchymal stem cell via downregulation of MKP-1

    RUICONG GUAN1,3,#, KUAN ZENG1,#, MINNAN GAO1, JIANFEN LI1, HUIQI JIANG1, LU ZHANG1, JINGWEN LI1, BIN ZHANG1, YUQIANG LIU1, ZHUXUAN LIU1, DIAN WANG1, YANQI YANG1,2,*

    BIOCELL, Vol.46, No.11, pp. 2455-2463, 2022, DOI:10.32604/biocell.2022.021661

    Abstract Bone marrow mesenchymal stem cell (MSC)-based therapy is a novel candidate for heart repair. But ischemia-reperfusion injury leads to low viability of MSC. Dexmedetomidine (Dex) has been found to protect neurons against ischemia-reperfusion injury. It remains unknown if Dex could increase the viability of MSCs under ischemia. The present study is to observe the potential protective effect of Dex on MSCs under ischemia and its underlying mechanisms. Specific mRNAs related to myocardial ischemia in the GEO database were selected from the mRNA profiles assessed in a previous study using microarray. The most dysregulated mRNAs of the specific ones from the… More >

  • Open Access

    VIEWPOINT

    Mesenchymal stem cells and cell-free preparations for treating atopic dermatitis

    TRINIDAD MONTERO-VILCHEZ1,2,*, MANUEL SANCHEZ-DIAZ1,2, CAROLINA MONTERO-VILCHEZ3, ALVARO SIERRA-SANCHEZ2, SALVADOR ARIAS-SANTIAGO1,2,4

    BIOCELL, Vol.46, No.11, pp. 2363-2367, 2022, DOI:10.32604/biocell.2022.021399

    Abstract Atopic dermatitis (AD) is a chronic cutaneous inflammatory disease caused by an interaction between genetic, immune and epidermal barrier factors. Several treatments can be used to treat this disease but there are patients that do not respond to actual drugs. So, there is a need to develop effective therapies for AD. Mesenchymal stem cells (MSCs) are non-hematopoietic multipotent adult progenitor cells with immunomodulatory power and self-regenerating capacity to repair tissue damage, so they could be a potential effective treatment for AD. MSCs-Conditioned Medium (CM) and MSCs-exosomes are cell-free preparation with molecules secreted by stem cells that could be also beneficial… More >

  • Open Access

    REVIEW

    Mesenchymal stem cell-derived exosomes as new remedy for the treatment of inflammatory eye diseases

    CARL RANDALL HARRELL1,#, ANA VOLAREVIC2,#,*, DRAGICA PAVLOVIC3, VALENTIN DJONOV4, VLADISLAV VOLAREVIC4,5,*

    BIOCELL, Vol.46, No.10, pp. 2195-2200, 2022, DOI:10.32604/biocell.2022.020175

    Abstract Detrimental immune response has a crucially important role in the development and progression of inflammatory eye diseases. Inflammatory mediators and proteolytic enzymes released by activated immune cells induce serious injury of corneal epithelial cells and retinal ganglion cell which may result in the vision loss. Mesenchymal stem cells (MSCs) are regulatory cells which produce various immunosuppressive factors that modulate phenotype and function of inflammatory immune cells. However, several safety issues, including undesired differentiation and emboli formation, limit clinical use of MSCs. MSC-derived exosomes (MSC-Exos) are nano-sized extracellular vesicles which contain all MSC-derived immunoregulatory factors. Intraocular administration of MSC-Exos efficiently attenuated… More >

  • Open Access

    VIEWPOINT

    Mesenchymal stem cells, the secretome and biomaterials: Regenerative medicine application

    KI-TAEK LIM#,*, TEJAL V. PATIL#, DINESH K. PATEL, SAYAN DEB DUTTA, KEYA GANGULY, AAYUSHI RANDHAWA

    BIOCELL, Vol.46, No.10, pp. 2201-2208, 2022, DOI:10.32604/biocell.2022.020013

    Abstract Mesenchymal stem cells (MSCs) are multipotent cells usually isolated from bone marrow, endometrium, adipose tissues, skin, and dental pulp. MSCs played a crucial role in regenerative therapy and have been introduced as an interdisciplinary field between cell biology and material science. Recently, MSCs have been widely explored for their application in regenerative medicine and COVID-19 treatment. Different approaches to evaluate the future of biomaterials and stem cell properties have been developed. However, misconceptions and ethical issues still exist, such as MSCs being non-angiogenic, anti-apoptotic, and immunoregulatory competencies. Embryonic stem cells isolation primarily requires the consent of donors and can include… More >

  • Open Access

    VIEWPOINT

    The RhoA nuclear localization changes in replicative senescence: New evidence from in vitro human mesenchymal stem cells studies

    DANILA BOBKOV1,2,3,*, ANASTASIA POLYANSKAYA1, ANASTASIA MUSORINA1, GALINA POLJANSKAYA1

    BIOCELL, Vol.46, No.9, pp. 2053-2058, 2022, DOI:10.32604/biocell.2022.019469

    Abstract All non-immortalized mesenchymal stem cells have a limited proliferative potential, that is, replicative senescence (RS) is an integral characteristic of the life of all mesenchymal stem cells (MSCs). It is known that one of the important signs of RS is a decrease of cell motility, and that violations of migration processes contribute to the deterioration of tissue regeneration. Therefore, the characterization of the properties of the cell line associated with RS is a prerequisite for the effective use of MSCs in restorative medicine. One of the key proteins regulating cell motility is the small GTPase RhoA. The main purpose of… More >

  • Open Access

    ARTICLE

    Transplantation of BMP-7 gene-transfected bone marrow mesenchymal stem cells for the treatment of spinal cord injury in rats

    XUYI WANG1, WEN ZHANG2, LEI GAO2, KUANXIN LI1,3,*

    BIOCELL, Vol.46, No.9, pp. 2065-2072, 2022, DOI:10.32604/biocell.2022.018265

    Abstract Background: Spinal cord injury (SCI) is a serious traumatic disease of the central nervous system, and there is currently no effective treatment for SCI because of its complicated pathophysiology. Bone marrow mesenchymal stem cells (BMSCs) have multidirectional differentiation abilities. Our study aims to explore the effects of bone morphogenetic protein 7 (BMP-7)-modified BMSCs transplantation on the repair of SCI in rats. Methods: In this study, a rat spinal cord injury model was established with the modified Allen method. Then, BMSCs transfected with the BMP7 gene were transplanted to treat the spinal cord injury in rats. Forty Sprague-Dawley rats were randomly… More >

  • Open Access

    VIEWPOINT

    Inflammatory priming of mesenchymal stem cells: Focus on growth factors enhancement

    ALEKSANDRA GORNOSTAEVA, ELENA ANDREEVA*, LUDMILA BURAVKOVA*

    BIOCELL, Vol.46, No.9, pp. 2049-2052, 2022, DOI:10.32604/biocell.2022.019993

    Abstract Multipotent mesenchymal stromal cells (MSCs) are actively involved in reparation and inflammation processes, providing damaged tissue reparation and suppressing immune cell responses in vivo. The effects are mostly due to the production of a wide range of paracrine factors, including growth factors and immunomodulatory mediators. To induce immunosuppressive activity, MSCs are primed by inflammatory cytokines, which results in an increased production of immunomodulatory molecules. However, stimulation of reparative properties is also necessary. This viewpoint manuscript highlights the possibilities of inflammatory priming to increase the production of growth factors by MSCs. More >

  • Open Access

    REVIEW

    Mesenchymal stem cell secretome and nanotechnology: Combining therapeutic strategies

    ADRIANA L. FERREIRA, GUSTAVO C. PARIS, ALINE DE A. AZEVEDO, ERIKA A. C. CORTEZ, SIMONE N. CARVALHO, LAIS DE CARVALHO, ALESSANDRA A. THOLE*

    BIOCELL, Vol.46, No.8, pp. 1807-1813, 2022, DOI:10.32604/biocell.2022.019363

    Abstract Mesenchymal stem cells (MSC) have pushed the field of stem cell-based therapies by inducing tissue regeneration, immunosuppression, and angiogenesis mainly through vesicles and soluble factors release (paracrine signaling). MSC-extracellular vesicles (MSC-EV) adaptable secretome and homing to injured sites allowed researchers to unlock a new era of cell-free based therapy. In parallel, nanoparticles (NP) have been explored in contributing to transport and drug delivery systems, giving drugs desired physical-chemical properties to exploit cell behavior. However, NPs can be quickly recognized by immune cells and cleared from circulation. In this viewpoint, we explore how combining both therapeutic strategies can improve efficacy and… More >

Displaying 11-20 on page 2 of 68. Per Page