Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (68)
  • Open Access

    VIEWPOINT

    Synergy of single-cell sequencing analyses and in vivo lineage-tracing approaches: A new opportunity for stem cell biology

    YUKI MATSUSHITA, WANIDA ONO, NORIAKI ONO*

    BIOCELL, Vol.46, No.5, pp. 1157-1162, 2022, DOI:10.32604/biocell.2022.018960

    Abstract Single-cell sequencing technologies have rapidly progressed in recent years, and been applied to characterize stem cells in a number of organs. Somatic (postnatal) stem cells are generally identified using combinations of cell surface markers and transcription factors. However, it has been challenging to define micro-heterogeneity within “stem cell” populations, each of which stands at a different level of differentiation. As stem cells become defined at a single-cell level, their differentiation path becomes clearly defined. Here, this viewpoint discusses the potential synergy of single-cell sequencing analyses with in vivo lineage-tracing approaches, with an emphasis on practical considerations in stem cell biology. More >

  • Open Access

    VIEWPOINT

    Therapeutic mechanisms and routes of delivery of mesenchymal stem cells in veterinary medicine: A point of view

    AMANDA BARACHO TRINDADE HILL1,2,*, JONATHAN EDWIN BARACHO TRINDADE HILL2

    BIOCELL, Vol.46, No.5, pp. 1173-1176, 2022, DOI:10.32604/biocell.2022.018637

    Abstract Mesenchymal stem cells (MSCs) represent an important tool in veterinary regenerative medicine due to their ability to home to injury sites and secrete molecules that regulate niches into regenerative microenvironments. Successful cell therapy depends on many factors, including choice of administration route and application of understanding of cell potency and their therapeutic mechanisms. In this point of view, the authors leverage the tumultuous history of the field to demonstrate the need for clinicians to continually update themselves as new discoveries are made in order to avoid misalignments in the future, especially regarding administration routes and dose frequency, as well as… More >

  • Open Access

    ARTICLE

    Mesenchymal stem cell-derived exosome: The likely game-changer in stem cell research

    DICKSON KOFI WIREDU OCANSEY1,2,*, XINWEI XU1, LU ZHANG1, FEI MAO1,*

    BIOCELL, Vol.46, No.5, pp. 1169-1172, 2022, DOI:10.32604/biocell.2022.018470

    Abstract Stem cell research is a promising area of transplantation and regenerative medicine with tremendous potential for improving the clinical treatment and diagnostic options across a variety of conditions and enhancing understanding of human development. Over the past few decades, mesenchymal stem cell (MSCs) studies have exponentially increased with a promising outcome. However, regardless of the huge investment and the research attention given to stem cell research, FDA approval for clinical use is still lacking. Amid the challenges confronting stem cell research as a cell-based product, there appears to be evidence of superior effect and heightened potential success in its expressed… More >

  • Open Access

    RETRACTION

    Retraction: M1 macrophage-derived exosomes moderate the differentiation of bone marrow mesenchymal stem cells

    TAILIN WU1,#; XIANG ZHOU2,#; CANHUA YE1; WENCAN LU1; HAITAO LIN1; YANZHE WEI1; ZEKAI KE1; ZHENGJI HUANG1; JIANZHOU LUO1; HUIREN TAO1; CHUNGUANG DUAN1,*

    BIOCELL, Vol.46, No.4, pp. 1123-1123, 2022, DOI:10.32604/biocell.2022.020679

    Abstract This article has no abstract. More >

  • Open Access

    VIEWPOINT

    Mesenchymal stem cells-derived extracellular vesicles as ‘natural’ drug delivery system for tissue regeneration

    KENJI TSUJI*, SHINJI KITAMURA, JUN WADA

    BIOCELL, Vol.46, No.4, pp. 899-902, 2022, DOI:10.32604/biocell.2022.018594

    Abstract Mesenchymal stem cells (MSCs) have abilities to mediate tissue protection through mechanisms of anti-apoptosis, anti-oxidative stress and anti-fibrosis as well as tissue regeneration through mechanisms of cell proliferation, differentiation and angiogenesis. These effects by MSCs are mediated by a variety of factors, including growth factors, cytokines and extracellular vesicles (EVs). Among these factors, EVs, containing proteins, mRNA and microRNAs (miRNA), may carry their contents into distant tissues with high stability. Therefore, the treatment with MSC-derived EVs may be promising as ‘natural’ drug delivery systems (DDS). Especially, the treatment of MSC-derived EVs with the manipulation of specific miRNAs expression has been… More >

  • Open Access

    VIEWPOINT

    The versatility of mesenchymal stem cells: From regenerative medicine to COVID, what is next?

    THAÍS CASAGRANDE PAIM, MÁRCIA ROSÂNGELA WINK*

    BIOCELL, Vol.46, No.4, pp. 913-922, 2022, DOI:10.32604/biocell.2022.018498

    Abstract Mesenchymal stem cells (MSCs) play key roles in regenerative medicine by promoting tissue healing. MSCs can be isolated from different adult tissues and they are able to differentiate into several lineages. Due to their anti-inflammatory, angiogenic and immune-modulatory properties, MSCs are suitable for tissue engineering applications and, when associated with biomaterials, their benefits can be improved. Moreover, recently, MSCs have been studied for new clinical applications, such as in the treatment of patients with COVID-19. MSCs regenerative potential has been attributed to their secretome, which comprises extracellular matrix, soluble proteins and several elements, including the release of extracellular vesicles. Even… More >

  • Open Access

    VIEWPOINT

    Mesenchymal stem cells derived secretome as an innovative cell-free therapeutic approach

    EJLAL ABU-EL-RUB1,2,*, RAMADA R. KHASAWNEH1, FATIMAH A. ALMAHASNEH1, HANA M. ZEGALLAI3,4

    BIOCELL, Vol.46, No.4, pp. 907-911, 2022, DOI:10.32604/biocell.2022.018306

    Abstract The paracrine and immunomodulatory cytokines secreted by mesenchymal stem cells (MSCs), generally referred to as the MSCs derived secretome, has substantial potential for the treatment of many chronic and degenerative diseases. MSCs secretome contains both common and disease specific cytokines and modulators that can be beneficial against a wide range of chronic diseases. Herein, we discuss the MSCs secretome composition profile and its translational applicability and the challenges surrounding its use in clinical settings. More >

  • Open Access

    VIEWPOINT

    Controversies in therapeutic application of mesenchymal stem cell-derived secretome

    FERENC SIPOS*, GYÖRGYI MŰZES

    BIOCELL, Vol.46, No.4, pp. 903-906, 2022, DOI:10.32604/biocell.2022.018200

    Abstract Though mesenchymal stem cells (MSCs) are considered as an important pillar of regenerative medicine, their regenerative potential has been shown to be limited in several pathological conditions. The adverse properties of MSC-based cell therapy have drawn attention to the therapeutic use of MSC-derived secretome. However, MSC-originated exosomes and microvesicles can also possess a significant impact on disease development, including cancer. By interchanging secretome, MSCs can interact with tumor cells and promote mutual exchange/induction of cellular markers. In addition, enzymes secreted into and activated within exosomes can result in the acquisition of new tumor cell properties. Therefore, therapeutic applications of MSC-derived… More >

  • Open Access

    REVIEW

    Mesenchymal stem cells: As a multi-target cell therapy for clearing β-amyloid deposition in Alzheimer’s disease

    RUXIN ZHANG1, CHENGGANG LI2, RUOCHEN DU1, YITONG YUAN1, BICHUN ZHAO1, YUJUAN ZHANG1, CHUNFANG WANG1,*

    BIOCELL, Vol.46, No.3, pp. 583-592, 2022, DOI:10.32604/biocell.2022.017248

    Abstract Extracellular β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) are the pathological hallmarks of Alzheimer’s disease (AD). Studies have shown that aggregates of extracellular Aβ can induce neuroinflammation mediated neurotoxic signaling through microglial activation and release of pro-inflammatory factors. Thus, modulation of Aβ might be a potential therapeutic strategy for modifying disease progression. Recently, a large number of reports have confirmed the beneficial effects of mesenchymal stem cells (MSCs) on AD. It is believed to reduce neuroinflammation, reduce Aβ amyloid deposits and NFTs, increase acetylcholine levels, promote neurogenesis, reduce neuronal damage, and improve working memory and cognition. In this review, we… More >

  • Open Access

    REVIEW

    A review from mesenchymal stem-cells and their small extracellular vesicles in tissue engineering

    ODIN RAMIREZ-FERNANDEZ1,2, ESMERALDA ZUÑIGA-AGUILAR3,*

    BIOCELL, Vol.46, No.2, pp. 325-338, 2022, DOI:10.32604/biocell.2022.016892

    Abstract This review aims to offer a vision of the clinical reality of cell therapy today in intensive medicine. For this, it has been carried out a description of the properties, functions, and Mesenchymal Stem Cells (MSCS) sources to subsequently address the evidence in preclinical models and studies clinical trials with whole cells and models attributed to small extracellular vesicles (sEVs), nanoparticles made up of microvesicles secreted by cells with an effect on the extracellular matrix, and their impact as an alternative towards cell-free regenerative medicine. MSCs are cells that enhance the regenerative capacity which can be differentiated typically in different… More >

Displaying 31-40 on page 4 of 68. Per Page