Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (143)
  • Open Access


    Geometric Confinement Influences Cellular Mechanical Properties II -- Intracellular Variances in Polarized Cells

    Judith Su, Ricardo R. Brau, Xingyu Jiang, George M. Whitesides§, Matthew J. Lang, Peter T. C. So||

    Molecular & Cellular Biomechanics, Vol.4, No.2, pp. 105-118, 2007, DOI:10.3970/mcb.2007.004.105

    Abstract During migration, asymmetrically polarized cells achieve motion by coordinating the protrusion and retraction of their leading and trailing edges, respectively. Although it is well known that local changes in the dynamics of actin cytoskeleton remodeling drive these processes, neither the cytoskeletal rheological properties of these migrating cells are well quantified nor is it understand how these rheological properties are regulated by underlying molecular processes. In this report, we have used soft lithography to create morphologically polarized cells in order to examine rheological differences between the front and rear zone of an NIH 3T3 cell posed for migration. In addition, we… More >

  • Open Access


    Melanoma Cell Extravasation under Flow Conditions Is Modulated by Leukocytes and Endogenously Produced Interleukin 8

    Cheng Dong1,2,3, Margaret J. Slattery2,3, Shile Liang3, Hsin-Hsin Peng2

    Molecular & Cellular Biomechanics, Vol.2, No.3, pp. 145-160, 2005, DOI:10.3970/mcb.2005.002.145

    Abstract Attachment of tumor cells to the endothelium (EC) under flow conditions is critical for the migration of tumor cells out of the vascular system to establish metastases. Innate immune system processes can potentially promote tumor progression through inflammation dependant mechanisms.\nobreakspace {} White blood cells, neutrophils (PMN) in particular, are being studied to better understand how the host immune system affects cancer cell adhesion and subsequent migration and metastasis. Melanoma cell interaction with the EC is distinct from PMN-EC adhesion in the circulation. We found PMN increased melanoma cell extravasation, which involved initial PMN tethering on the EC, subsequent PMN capture… More >

  • Open Access


    The Effect of the Reynolds Number on Lateral Migration of Nonneutrally-Buoyant Spherical Particles in Poiseuille Flow

    S.-C. Hsiao1, M.S. Ingber2

    CMC-Computers, Materials & Continua, Vol.1, No.1, pp. 51-58, 2004, DOI:10.3970/cmc.2004.001.051

    Abstract The lateral migration of nonneutrally-buoyant spherical particles in Poiseuille flow is investigated numerically using the boundary element method. In particular, the steady, Navier-Stokes equations are solved using a classical domain integration method treating the nonlinear terms as pseudo-body forces. The numerical results for the lateral migration velocity are compared with experimental data. The numerical results indicate that the lateral migration velocity does not scale linearly with the Reynolds number. The methodology is extended to include non-Newtonian power-law fluids. The migration velocity is significantly affected for particles suspended in this class of fluids and can actually change direction for large values… More >

  • Open Access


    A Computational Approach to Estimating a Lubricating Layer in Concrete Pumping

    Seon Doo Jo1, Chan Kyu Park2, Jae Hong Jeong2, Seung Hoon Lee2, Seung Hee Kwon3

    CMC-Computers, Materials & Continua, Vol.27, No.3, pp. 189-210, 2012, DOI:10.3970/cmc.2011.027.189

    Abstract When concrete is being pumped, a lubricating layer forms at the interface of the inner concrete and the wall of the pipe. The lubricating layer is one of the most dominant factors in determining the pumping capability, yet no study has endeavored to quantitatively estimate the thickness and rheological properties of the layer. Recently, there has been a growing demand for large-scale construction under extreme conditions, such as high-rise buildings and super-long span bridges. This demand has heightened the need for more accurate predictions of pumpability.
    A possible mechanism that contributes to the formation of the lubricating layer is shear-induced… More >

  • Open Access


    First-principles Calculation of Interfacial Adhesion Strength and Electromigration for the Micro-bump Interconnect of 3D Chip Stacking Packaging

    W.H. Chen1, H.C. Cheng2,3, C.F. Yu1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.1, pp. 1-13, 2015, DOI:10.3970/cmes.2015.109.001

    Abstract This study aims at exploring the interfacial adhesion strength between solder bump and four typical under bump metallurgies (UBMs), i.e., Cu/Ni, Cu/TiW, Cu/Ni/Cr and /Cu/V/Cr, at atomistic scale. The average bond length and interfacial adhesion stress of the Sn-3.5Ag/Cu/Ni, Sn-3.5Ag/Cu/TiW, Sn-3.5Ag/Cu/Ni/Cr and Sn-3.5Ag/Cu/V/Cr micro-bump interconnects are calculated through the firstprinciples density functional theory (DFT) calculation to estimate the interfacial adhesion strength between the solder bump and UBMs. In addition, by investigating the electric field effect on the average bond length and adhesive stress, the combination of solder bump and UBM with better interfacial adhesion strength and electromigration resistance ability can… More >

  • Open Access


    On the First-principles Density Functional Theory Calculation of Electromigration Resistance Ability for Sn-based Intermetallic Compounds

    Wen-Hwa Chen1,2, Ching-Feng Yu1, Hsien-Chie Cheng2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.2, pp. 119-131, 2014, DOI:10.3970/cmes.2014.100.119

    Abstract The aim of the study is to investigate the interactions between Sn adatoms in a solder bump and three typical Sn-based intermetallic compounds (IMCs) surface, i.e., Cu3Sn, Cu6Sn5, and Ni3Sn4, at the atomistic scale. The adsorption energy, average bond length, and bond population of the Sn/Cu3Sn, Sn/Cu6Sn5,and Sn/Ni3Sn4 systems are calculated through the first-principles density functional theory (DFT) calculation to investigate how the Sn adatoms influence the IMC surface. The calculated results show that the Sn atoms on the Cu3Sn (0 0 1) surface hold the largest adsorption energy, average bond length and bond population, implying that the Cu3Sn (0… More >

  • Open Access


    Numerical study on seepage property of karst collapse columns under particle migration

    Banghua Yao1,2, Jianping Wei1, Dengke Wang1, Dan Ma2,3, Zhanqing Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.2, pp. 81-100, 2013, DOI:10.3970/cmes.2013.091.081

    Abstract Presently, there is an increasing number of water outburst accidents in China as mining activity continues to develop to deeper ground. In these accidents, water outburst caused by karst collapse columns often results in serious damage, involving both the loss of lives and significant economic loss. Therefore, it is of utmost importance to study the seepage property and water outburst mechanism of karst collapse columns. In this paper, based on the seepage theory and the groundwater dynamic theory of porous media, a fluid-solid coupling model for karst collapse columns was built and then imported into COMSOL Multiphysics to be solved,… More >

  • Open Access


    Slow Viscous Migration of a Conducting Solid Particle under the Action of Uniform Ambient Electric and Magnetic Fields

    A. Sellier1

    CMES-Computer Modeling in Engineering & Sciences, Vol.21, No.2, pp. 105-132, 2007, DOI:10.3970/cmes.2007.021.105

    Abstract We examine the low-Reynolds-number migration of a conducting and arbitrarily-shaped solid particle freely immersed in a metal liquid of different conductivity when subject to uniform ambient electric and magnetic fields. The boundary formulation established elsewhere for an insulating particle is extended and the incurred particle's rigid-body motion is then obtained by determinating a very few surface quantities on the particle's surface. The behavior of either oblate or prolate conducting spheroids is analytically investigated and the poposed procedure for the challenging case of other non-trivial geometries is implemented and benchmarked against those solutions. The numerical implementation makes it possible to obtain… More >

  • Open Access


    Molecular-Dynamics Analysis of Grain-Boundary Grooving in Interconnect Films with Underlayers

    T. Iwasaki1 and H. Miura1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.5, pp. 551-558, 2003, DOI:10.3970/cmes.2003.004.551

    Abstract We have developed a molecular-dynamics technique for investigating migration-induced failures in interconnect films for ULSIs. This technique was used to simulate grain-boundary grooving in Al and Cu films. The simulations showed that the grain-boundary grooves are formed by atomic diffusion at the grain boundary. To clarify what kind of underlay material is effective in suppressing this diffusion, we calculated the dependence of groove depth on the kind of underlay material. The calculation showed that the groove depth of the Al film decreases in the order: Al/Ta, Al/W, and Al/TiN while that of the Cu film decreases in the order: Cu/TiN,… More >

  • Open Access


    Design Optimization of a Conical Annular Centrifugal Contractor

    M. N. Noui-Mehidi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.2, pp. 141-152, 2011, DOI:10.3970/fdmp.2011.007.141

    Abstract The present work is concerned with a numerical study of the performance of a conical annular centrifugal contractor through the analysis of the flow properties when the apex angle is changed for different imposed axial flows. The calculations revealed the advantage of using conical annular centrifugal contractors compared to the cylindrical annular centrifuges. The study is conducted by a comparison analysis of the hydrodynamics of fluid flow in both conical and cylindrical contractors where moderate axial flows are imposed. In both systems the outer body is stationary while the inner rotor is maintained at constant speed. The calculations are achieved… More >

Displaying 131-140 on page 14 of 143. Per Page