Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (235)
  • Open Access

    ARTICLE

    Generative Multi-Modal Mutual Enhancement Video Semantic Communications

    Yuanle Chen1, Haobo Wang1, Chunyu Liu1, Linyi Wang2, Jiaxin Liu1, Wei Wu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2985-3009, 2024, DOI:10.32604/cmes.2023.046837

    Abstract Recently, there have been significant advancements in the study of semantic communication in single-modal scenarios. However, the ability to process information in multi-modal environments remains limited. Inspired by the research and applications of natural language processing across different modalities, our goal is to accurately extract frame-level semantic information from videos and ultimately transmit high-quality videos. Specifically, we propose a deep learning-based Multi-Modal Mutual Enhancement Video Semantic Communication system, called M3E-VSC. Built upon a Vector Quantized Generative Adversarial Network (VQGAN), our system aims to leverage mutual enhancement among different modalities by using text as the main carrier of transmission. With it,… More >

  • Open Access

    ARTICLE

    An Empirical Study on the Effectiveness of Adversarial Examples in Malware Detection

    Younghoon Ban, Myeonghyun Kim, Haehyun Cho*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3535-3563, 2024, DOI:10.32604/cmes.2023.046658

    Abstract Antivirus vendors and the research community employ Machine Learning (ML) or Deep Learning (DL)-based static analysis techniques for efficient identification of new threats, given the continual emergence of novel malware variants. On the other hand, numerous researchers have reported that Adversarial Examples (AEs), generated by manipulating previously detected malware, can successfully evade ML/DL-based classifiers. Commercial antivirus systems, in particular, have been identified as vulnerable to such AEs. This paper firstly focuses on conducting black-box attacks to circumvent ML/DL-based malware classifiers. Our attack method utilizes seven different perturbations, including Overlay Append, Section Append, and Break Checksum, capitalizing on the ambiguities present… More >

  • Open Access

    ARTICLE

    Classification of Conversational Sentences Using an Ensemble Pre-Trained Language Model with the Fine-Tuned Parameter

    R. Sujatha, K. Nimala*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1669-1686, 2024, DOI:10.32604/cmc.2023.046963

    Abstract Sentence classification is the process of categorizing a sentence based on the context of the sentence. Sentence categorization requires more semantic highlights than other tasks, such as dependence parsing, which requires more syntactic elements. Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence, recognizing the progress and comparing impacts. An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus. The conversational sentences are classified into four categories: information, question, directive, and commission. These classification label sequences are for analyzing the conversation progress and… More >

  • Open Access

    ARTICLE

    Local Adaptive Gradient Variance Attack for Deep Fake Fingerprint Detection

    Chengsheng Yuan1,2, Baojie Cui1,2, Zhili Zhou3, Xinting Li4,*, Qingming Jonathan Wu5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 899-914, 2024, DOI:10.32604/cmc.2023.045854

    Abstract In recent years, deep learning has been the mainstream technology for fingerprint liveness detection (FLD) tasks because of its remarkable performance. However, recent studies have shown that these deep fake fingerprint detection (DFFD) models are not resistant to attacks by adversarial examples, which are generated by the introduction of subtle perturbations in the fingerprint image, allowing the model to make fake judgments. Most of the existing adversarial example generation methods are based on gradient optimization, which is easy to fall into local optimal, resulting in poor transferability of adversarial attacks. In addition, the perturbation added to the blank area of… More >

  • Open Access

    ARTICLE

    A Novel Fall Detection Framework Using Skip-DSCGAN Based on Inertial Sensor Data

    Kun Fang, Julong Pan*, Lingyi Li, Ruihan Xiang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 493-514, 2024, DOI:10.32604/cmc.2023.045008

    Abstract With the widespread use of Internet of Things (IoT) technology in daily life and the considerable safety risks of falls for elderly individuals, research on IoT-based fall detection systems has gained much attention. This paper proposes an IoT-based spatiotemporal data processing framework based on a depthwise separable convolution generative adversarial network using skip-connection (Skip-DSCGAN) for fall detection. The method uses spatiotemporal data from accelerometers and gyroscopes in inertial sensors as input data. A semisupervised learning approach is adopted to train the model using only activities of daily living (ADL) data, which can avoid data imbalance problems. Furthermore, a quantile-based approach… More >

  • Open Access

    ARTICLE

    Evaluating the Efficacy of Latent Variables in Mitigating Data Poisoning Attacks in the Context of Bayesian Networks: An Empirical Study

    Shahad Alzahrani1, Hatim Alsuwat2, Emad Alsuwat3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1635-1654, 2024, DOI:10.32604/cmes.2023.044718

    Abstract Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables. However, the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams. One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks, wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance. In this research paper, we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms. Our framework utilizes latent variables to quantify… More >

  • Open Access

    ARTICLE

    Sparse Adversarial Learning for FDIA Attack Sample Generation in Distributed Smart Grids

    Fengyong Li1,*, Weicheng Shen1, Zhongqin Bi1, Xiangjing Su2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2095-2115, 2024, DOI:10.32604/cmes.2023.044431

    Abstract False data injection attack (FDIA) is an attack that affects the stability of grid cyber-physical system (GCPS) by evading the detecting mechanism of bad data. Existing FDIA detection methods usually employ complex neural network models to detect FDIA attacks. However, they overlook the fact that FDIA attack samples at public-private network edges are extremely sparse, making it difficult for neural network models to obtain sufficient samples to construct a robust detection model. To address this problem, this paper designs an efficient sample generative adversarial model of FDIA attack in public-private network edge, which can effectively bypass the detection model to… More >

  • Open Access

    ARTICLE

    Existe-t-il un profil spécifique de perception du risque de COVID-19 chez les personnes atteintes d’un cancer ? une étude transversale

    Renaud Mabire-Yon1,*, Arnaud Siméone1, Thibaud Marmorat2, Anne-Sophie Petit1, Mathilde Perray1, Costanza Puppo1, Charlotte Bauquier1, Claire Della Vecchia1, Hervé Picard3, Marie Préau1

    Psycho-Oncologie, Vol.17, No.4, pp. 245-256, 2023, DOI:10.32604/po.2023.042296

    Abstract Objectifs : Cette étude visait à déterminer si les personnes atteintes d’un cancer (PAC) présentaient un profil unique de perception du risque COVID-19 et à identifier les facteurs psychosociaux caractérisant les PAC qui n’appartenaient pas au profil majoritaire de perception du risque. Procédure : Une étude transversale par auto-questionnaire en ligne a été menée en France du 25 avril au 7 mai 2020, avec un échantillon (n = 748) comprenant des PAC, des personnes ne recevant pas de traitement contre le cancer et des personnes n’ayant pas d’antécédents de cancer. Des profils latents de perception du risque COVID-19 (PLPR) ont… More >

  • Open Access

    ARTICLE

    Enhancing Healthcare Data Security and Disease Detection Using Crossover-Based Multilayer Perceptron in Smart Healthcare Systems

    Mustufa Haider Abidi*, Hisham Alkhalefah, Mohamed K. Aboudaif

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 977-997, 2024, DOI:10.32604/cmes.2023.044169

    Abstract The healthcare data requires accurate disease detection analysis, real-time monitoring, and advancements to ensure proper treatment for patients. Consequently, Machine Learning methods are widely utilized in Smart Healthcare Systems (SHS) to extract valuable features from heterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities. These methods are employed across different domains that are susceptible to adversarial attacks, necessitating careful consideration. Hence, this paper proposes a crossover-based Multilayer Perceptron (CMLP) model. The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on the medical records of patients. Once an… More >

  • Open Access

    ARTICLE

    Toward Improved Accuracy in Quasi-Static Elastography Using Deep Learning

    Yue Mei1,2,3, Jianwei Deng1,2, Dongmei Zhao1,2, Changjiang Xiao1,2, Tianhang Wang4, Li Dong5, Xuefeng Zhu1,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 911-935, 2024, DOI:10.32604/cmes.2023.043810

    Abstract Elastography is a non-invasive medical imaging technique to map the spatial variation of elastic properties of soft tissues. The quality of reconstruction results in elastography is highly sensitive to the noise induced by imaging measurements and processing. To address this issue, we propose a deep learning (DL) model based on conditional Generative Adversarial Networks (cGANs) to improve the quality of nonhomogeneous shear modulus reconstruction. To train this model, we generated a synthetic displacement field with finite element simulation under known nonhomogeneous shear modulus distribution. Both the simulated and experimental displacement fields are used to validate the proposed method. The reconstructed… More >

Displaying 11-20 on page 2 of 235. Per Page