Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,634)
  • Open Access

    ARTICLE

    Finite Element Multi-mode Approach to Thermal Postbuckling of Functionally Graded Plates

    W. Xia1, Y.P. Feng2, D.W. Zhao3

    CMC-Computers, Materials & Continua, Vol.46, No.2, pp. 125-144, 2015, DOI:10.3970/cmc.2015.046.125

    Abstract Postbuckling analysis of functionally graded ceramic-metal plates under temperature field is presented using finite element multi-mode method. The three-node triangular element based on the Mindlin plate theory is employed to account for the transverse shear strains, and the von-Karman nonlinear strain-displacement relation is utilized considering the geometric nonlinearity. The effective material properties are assumed to vary through the thickness direction according to the power law distribution of the volume fraction of constituents. The temperature distribution along the thickness is determined by one dimensional Fourier equations of heat conduction. The buckling mode shape solved from eigen-buckling analysis is adopted as the… More >

  • Open Access

    ARTICLE

    Development and Characterization of the Midrib of Coconut Palm Leaf Reinforced Polyester Composite

    Neeraj Dubey1, Geeta Agnihotri1

    CMC-Computers, Materials & Continua, Vol.45, No.1, pp. 39-56, 2015, DOI:10.3970/cmc.2015.045.039

    Abstract In this paper, midrib of coconut palm leaves (MCL) was investigated for the purpose of development of natural fiber reinforced polymer matrix composites. A new natural fiber composite as MCL/polyester is developed by the hand lay-up method, and the material and mechanical properties of the fiber, matrix and composite materials were evaluated. The effect of fiber content on the tensile, flexural, impact, compressive strength and heat distortion temperature (HDT) was investigated. It was found that the MCL fiber had the maximum tensile strength, tensile modulus flexural strength, flexural modulus and Izod impact strength of 177.5MPa, 14.85GPa, 316.04MPa and 23.54GPa, 8.23KJ/m2More >

  • Open Access

    ARTICLE

    Bending, Free Vibration and Buckling Analysis of Functionally Graded Plates via Wavelet Finite Element Method

    Hao Zuo1,2, Zhibo Yang1,2,3, Xuefeng Chen1,2, Yong Xie4, Xingwu Zhang1,2

    CMC-Computers, Materials & Continua, Vol.44, No.3, pp. 167-204, 2014, DOI:10.3970/cmc.2014.044.167

    Abstract Following previous work, a wavelet finite element method is developed for bending, free vibration and buckling analysis of functionally graded (FG) plates based on Mindlin plate theory. The functionally graded material (FGM) properties are assumed to vary smoothly and continuously throughout the thickness of plate according to power law distribution of volume fraction of constituents. This article adopts scaling functions of two-dimensional tensor product BSWI to form shape functions. Then two-dimensional FGM BSWI element is constructed based on Mindlin plate theory by means of two-dimensional tensor product BSWI. The proposed two-dimensional FGM BSWI element possesses the advantages of high convergence,… More >

  • Open Access

    ARTICLE

    Mechanical Analysis of 3D Composite Materials by Hybrid Boundary Node Method

    Yu Miao1, Zhe Chen1, Qiao Wang1,2, Hongping Zhu1

    CMC-Computers, Materials & Continua, Vol.43, No.1, pp. 49-74, 2014, DOI:10.3970/cmc.2014.043.049

    Abstract In this paper, an improved multi-domain model based on the hybrid boundary node method (Hybrid BNM) is proposed for mechanical analysis of 3D composites. The Hybrid BNM is a boundary type meshless method which based on the modified variational principle and the Moving Least Squares (MLS) approximation. The improved multi-domain model can reduce the total degrees of freedom (DOFs) compared with the conventional multi-domain solver. It is very suitable for the inclusion-based composites, especially for the composites when the inclusions are solid and totally embedded in the matrix domain. Numerical examples are presented to verify the improved multi-domain model and… More >

  • Open Access

    ARTICLE

    Size-Dependent Flexural Dynamics of Ribs-Connected Polymeric Micropanels

    K.B. Mustapha 1,2

    CMC-Computers, Materials & Continua, Vol.42, No.2, pp. 141-174, 2014, DOI:10.3970/cmc.2014.042.141

    Abstract This study investigates the sensitivity of the flexural response of a ribconnected system of coupled micro-panels with traction-free surfaces. Idealized as a two-dimensional elastic continuum with a finite transverse stiffness, each micropanels’ behavior is examined within the framework of the biharmonic mathematical model derived from the higher-order, size-dependent strain energy formulation. The model incorporates the material length scale, which bears an associative relationship with the underlying polymer’s averaged Frank elastic constant. Upper estimates of the eigenvalue of the system, under fully clamped edges and simplysupported edges, are determined by the Rayleigh method. The adopted theory for the micro-panel’s behavior takes… More >

  • Open Access

    ARTICLE

    Design, Fabrication, Characterization and Simulation of PIP-SiC/SiC Composites

    S. Zhao1, Zichun Yang1,2, X. G. Zhou3, X. Z. Ling4, L. S. Mora5, D. Khoshkhou6, J. Marrow5

    CMC-Computers, Materials & Continua, Vol.42, No.2, pp. 103-124, 2014, DOI:10.3970/cmc.2014.042.103

    Abstract Continuous SiC fiber reinforced SiC matrix composites (SiC/SiC) have been studied and developed for high temperature and fusion applications. Polymer impregnation and pyrolysis (PIP) is a conventional technique for fabricating SiC/SiC composites. In this research, KD-1 SiC fibers were employed as reinforcements, a series of coatings such as pyrocarbon (PyC), SiC and carbon nanotubes (CNTs) were synthesized as interphases, PCS and LPVCS were used as precursors and SiC/SiC composites were prepared via the PIP method. The mechanical properties of the SiC/SiC composites were characterized. Relationship between the interphase shear strength and the fracture toughness of the composites was established. X-ray… More >

  • Open Access

    ARTICLE

    Investigation of the Embedded Element Technique for ModellingWavy CNT Composites

    Anna Y. Matveeva1, Helmut J. Böhm2, Grygoriy Kravchenko2, Ferrie W. J. van Hattum1

    CMC-Computers, Materials & Continua, Vol.42, No.1, pp. 1-23, 2014, DOI:10.3970/cmc.2014.042.001

    Abstract This paper presents a comparison of different finite element approaches to modelling polymers reinforced with wavy, hollow fibres with the aim of predicting the effective elastic stiffness tensors of the composites. The waviness of the tubes is described by sinusoidal models with different amplitude-to-wavelength parameters. These volume elements are discretized by structured volume meshes onto which fibres in the form of independently meshed beam, shell or volume elements are superimposed. An embedded element technique is used to link the two sets of meshes. Reference solutions are obtained from conventional three-dimensional volume models of the same phase arrangements. Periodicity boundary conditions… More >

  • Open Access

    ARTICLE

    A Simple Locking-Alleviated 3D 8-Node Mixed-Collocation C0 Finite Element with Over-Integration, for Functionally-Graded and Laminated Thick-Section Plates and Shells, with & without Z-Pins

    Leiting Dong1,2, Ahmed S. El-Gizawy3, Khalid A. Juhany3, Satya N. Atluri2

    CMC-Computers, Materials & Continua, Vol.41, No.3, pp. 163-192, 2014, DOI:10.3970/cmc.2014.041.163

    Abstract Following previous work of [Dong, El-Gizawy, Juhany, Atluri (2014)], a simple locking-alleviated 3D 8-node mixed-collocation C0 finite element (denoted as CEH8) is developed in this study, for the modeling of functionally-graded or laminated thick-section composite plates and shells, without using higher-order or layer-wise zig-zag plate and shell theories which are widely popularized in the current literature. The present C0 element independently assumes an 18-parameter linearly-varying Cartesian strain field. The independently assumed Cartesian strains are related to the Cartesian strains derived from mesh-based Cartesian displacement interpolations, by exactly enforcing 18 pre-defined constraints at 18 pre-selected collocation points. The constraints are rationally… More >

  • Open Access

    ARTICLE

    A Numerical Modeling of Failure Mechanism for SiC Particle Reinforced Metal-Metrix Composites

    Qiubao Ouyang1, Di Zhang1,2, Xinhai Zhu3, Zhidong Han3

    CMC-Computers, Materials & Continua, Vol.41, No.1, pp. 37-54, 2014, DOI:10.3970/cmc.2014.041.037

    Abstract The present work is to investigate the failure mechanisms in the deformation of silicon carbide (SiC) particle reinforced aluminum Metal Matrix Composites (MMCs). To better deal with crack growth, a new numerical approach: the MLPG-Eshelby Method is used. This approach is based on the meshless local weak-forms of the Noether/Eshelby Energy Conservation Laws and it achieves a faster convergent rate and is of good accuracy. In addition, it is much easier for this method to allow material to separate in the material fracture processes, comparing to the conventional popular FEM based method. Based on a statistical method and physical observations,… More >

  • Open Access

    ARTICLE

    A Multiscale Progressive Failure Modeling Methodology for Composites That Includes Fiber Strength Stochastics

    Trenton M. Ricks1, Thomas E. Lacy, Jr.1,2, Brett A. Bednarcyk3, Steven M.Arnold3, John W. Hutchins1

    CMC-Computers, Materials & Continua, Vol.40, No.2, pp. 99-130, 2014, DOI:10.3970/cmc.2014.040.099

    Abstract A multiscale modeling methodology was developed for continuous fiber composites that incorporates a statistical distribution of fiber strengths into coupled multiscale micromechanics/ finite element (FE) analyses. A modified twoparameter Weibull cumulative distribution function, which accounts for the effect of fiber length on the probability of failure, was used to characterize the statistical distribution of fiber strengths. A parametric study using the NASA Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) was performed to assess the effect of variable fiber strengths on local composite failure within a repeating unit cell (RUC) and subsequent global failure. The NASA code FEAMAC… More >

Displaying 1581-1590 on page 159 of 1634. Per Page