Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    HEAT FLOW IN THIN FILMS VIA SURFACE PHONON-POLARITONS

    Dye-Zone A. Chen, Gang Chen*

    Frontiers in Heat and Mass Transfer, Vol.1, No.2, pp. 1-6, 2010, DOI:10.5098/hmt.v1.2.3005

    Abstract We present a calculation of the thermally generated electromagnetic flux propagating along the in-plane direction of a polar, thin film. The approach is based on fluctuational electrodynamics and the fluctuation-dissipation theorem. We find that for silicon carbide films between 5 nm and 100 nm thick, the thinner films transport more in-plane flux due to the long propagation length of the anti-symmetric surface phonon-polariton mode. Comparison of results obtained from the fluctuation-dissipation approach and the kinetic theory approach shows favorable agreement. More >

  • Open Access

    ARTICLE

    INVESTIGATION OF PARTICULAR FEATURES OF THE NUMERICAL SOLUTION OF AN EVAPORATING THIN FILM IN A CHANNEL

    Greg Ball, John Polansky, Tarik Kaya*

    Frontiers in Heat and Mass Transfer, Vol.4, No.1, pp. 1-9, 2013, DOI:10.5098/hmt.v4.1.3002

    Abstract The fluid flow and heat transfer in an evaporating extended meniscus are numerically studied. Continuity, momentum, energy equations and the Kelvin-Clapeyron model are used to develop a third order, non-linear ordinary differential equation which governs the evaporating thin film. It is shown that the numerical results strongly depend on the choice of the accommodation coefficient and Hamaker constant as well as the initial perturbations. Therefore, in the absence of experimentally verified values, the numerical solutions should be considered as qualitative at best. It is found that the numerical results produce negative liquid pressures under certain specific conditions. This result may… More >

  • Open Access

    PROCEEDINGS

    Peeling by Pulling: Characterizing the Mechanical Behavior of Nanoscale Thin Films

    Zhaohe Dai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09223

    Abstract The flexible and clinging nature of ultra-thin films require the understanding of their elastic and adhesive properties in a wide range of circumstances from fabrications to applications. Simultaneously measuring both properties, however, is extremely difficult as the film thickness diminishes to nanoscales. In this talk, I will show our recent work that addresses such difficulties through peeling by vertically pulling thin films off from the substrates (we thus refer to it as “pull-to-peel”). Particularly, we perform in-situ pull-to-peel of graphene and MoS2 films in a scanning electron microscope and achieve simultaneous determination of their Young’s moduli and adhesions to gold… More >

  • Open Access

    PROCEEDINGS

    Flexoelectric Polar Patterns in Wrinkled Thin Films

    Hongxing Shang1,*, Xu Liang1, Shengping Shen1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09816

    Abstract Flexoelectricity is the coupling effect of polarization and strain gradients, which tends to be more pronounced in thin films owing to size dependency. When subjected to in-plane compression, a filmsubstrate system will form complex wrinkle morphologies along with large-area and tunable strain gradients. The wrinkle-induced strain gradients can locally break the inversion symmetry of dielectrics and thus introduce flexoelectric polarization. Here, an electromechanical coupling model is developed to theoretically deal with flexoelectric polar patterns in wrinkled thin films. By analyzing the energy competition of elastic potential and electrostatic energy, the amplitude, wavelength, and critical strain of the wrinkles with flexoelectricity… More >

  • Open Access

    ARTICLE

    INFLUENCE OF CRITICAL PARAMETERS ON LIQUID THIN FILM FLOW OF CASSON NANO FLUID OVER ELONGATED SHEET UNDER THERMOPHOROSIS AND BROWNIAN MOTION

    N. Vijayaa,*, Sunil Babu Gb , Vellanki Lakshmi Nc

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-8, 2020, DOI:10.5098/hmt.15.23

    Abstract Present investigation aims at scrutinizing the properties of heat and mass transfer phenomena of liquid thin film of Casson Nano fluid over elongated sheet under the influence of thermophorosis and Brownian motion. Casson Nano particle effect on thermophorotic force and on Brownian force is studied. Variables of similarity were induced to transmute partial differential equations into dimensionless equations and are resolved numerically by elegant method bvp 4c. Thin film thickness is calculated using MATHEMATICA for different values of critical parameters. Velocity profiles diminishes for higher values of Casson parameter and magnetic field parameter. The temperature escalates for higher values of… More >

  • Open Access

    REVIEW

    Hydromagnetic Nanofluid Film Flow over a Stretching Sheet with Prescribed Heat Flux and Viscous Dissipation

    Nourhan I. Ghoneim1,*, Ahmed M. Megahed2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1373-1388, 2022, DOI:10.32604/fdmp.2022.020509

    Abstract Thermal radiative heat transfer through a thin horizontal liquid film of a Newtonian nanofluid subjected to a magnetic field is considered. The physical boundary conditions are a variable surface heat flux and a uniform concentration along the sheet. Moreover, viscous dissipation is present and concentration is assumed to be influenced by both thermophoresis and Brownian motion effects. Using a similarity method to turn the underlying Partial differential equations into a set of ordinary differential equations (ODEs) and a shooting technique to solve these equations, the skin-friction coefficient, the Nusselt number, and the Sherwood number are determined. Among other things, it… More >

  • Open Access

    ARTICLE

    Hydrogenated Amorphous Carbon Films from Palmyra Sugar

    Budhi Priyanto1,2,*, Retno Asih1, Irma Septi Ardiani1, Anna Zakiyatul Laila1, Khoirotun Nadiyyah1, Bima Romadhon3, Sarayut Tunmee4, Hideki Nakajima4, Triwikantoro1, Yoyok Cahyono1, Darminto1,*

    Journal of Renewable Materials, Vol.9, No.6, pp. 1087-1098, 2021, DOI:10.32604/jrm.2021.014466

    Abstract A simple, highly reproducible, and environmentally friendly method is a considered approach in generating renewable energy materials. Here, hydrogenated amorphous carbon (a-C) films have been successfully prepared from palmyra liquid sugar, employing spin-coating and spraying methods. Compared with the former method, the latter shows a significance in producing a better homogeneity in particle size and film thickness. The obtained films have a thickness of approximately 1000 to 100 nm and contain an sp2 hexagonal structure (~70%) and sp3 tetrahedral configuration (~30%) of carbons. The introduction of boron (B) and nitrogen (N) as dopants has created the local structural modification of… More > Graphic Abstract

    Hydrogenated Amorphous Carbon Films from Palmyra Sugar

  • Open Access

    ARTICLE

    Hybrid Metamodel—NSGA-III—EDAS Based Optimal Design of Thin Film Coatings

    Kamlendra Vikram1, Uvaraja Ragavendran2, Kanak Kalita1,*, Ranjan Kumar Ghadai3, Xiao-Zhi Gao4

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1771-1784, 2021, DOI:10.32604/cmc.2020.013946

    Abstract In this work, diamond-like carbon (DLC) thin film coatings are deposited on silicon substrates by using plasma-enhanced chemical vapour deposition (PECVD) technique. By varying the hydrogen (H2) flow rate, CH4−Argon (Ar) flow rate and deposition temperature (Td) as per a Box-Behnken experimental design (BBD), 15 DLC deposition experiments are carried out. The Young’s modulus (E) and the coefficient of friction (COF) for the DLCs are measured. By using a second-order polynomial regression approach, two metamodels are built for E and COF, that establish them as functions of H2 flow rate, CH4-Ar flow rate and Td. A non-dominated sorting genetic algorithm… More >

  • Open Access

    ARTICLE

    Fractional Analysis of Thin Film Flow of Non-Newtonian Fluid

    Farnaz Ismail1, Mubashir Qayyum2, *, Syed Inayat Ali Shah1

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 825-845, 2020, DOI:10.32604/cmes.2020.011073

    Abstract Modeling and analysis of thin film flow with respect to magneto hydro dynamical effect has been an important theme in the field of fluid dynamics, due to its vast industrial applications. The analysis involves studying the behavior and response of governing equations on the basis of various parameters such as thickness of the film, film surface profile, shear stress, liquid velocity, volumetric flux, vorticity, gravity, viscosity among others, along with different boundary conditions. In this article, we extend this analysis in fractional space using a homotopy based scheme, considering the case of a Non-Newtonian Pseudo-Plastic fluid for lifting and drainage… More >

  • Open Access

    ARTICLE

    Finite Element Modeling of Thin Layers

    Dan Givoli1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.6, pp. 497-514, 2004, DOI:10.3970/cmes.2004.005.497

    Abstract Very thin layers with material properties which significantly differ from those of the surrounding medium appear in a variety of applications. Traditionally there are two extreme ways of handling such layers in finite element analysis: either they are fully modelled or they are totally ignored. The former option is often very expensive computationally, while the latter may lead to significant inaccuracies. Here a special technique of modeling thin layers is devised within the framework of the finite element method. This technique constitutes a prudent compromise between the two extremes mentioned above. The layer is replaced by an interface, namely a… More >

Displaying 1-10 on page 1 of 37. Per Page