Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access


    A Hybrid Deep Learning Approach for PM2.5 Concentration Prediction in Smart Environmental Monitoring

    Minh Thanh Vo1, Anh H. Vo2, Huong Bui3, Tuong Le4,5,*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3029-3041, 2023, DOI:10.32604/iasc.2023.034636

    Abstract Nowadays, air pollution is a big environmental problem in developing countries. In this problem, particulate matter 2.5 (PM2.5) in the air is an air pollutant. When its concentration in the air is high in developing countries like Vietnam, it will harm everyone’s health. Accurate prediction of PM2.5 concentrations can help to make the correct decision in protecting the health of the citizen. This study develops a hybrid deep learning approach named PM25-CBL model for PM2.5 concentration prediction in Ho Chi Minh City, Vietnam. Firstly, this study analyzes the effects of variables on PM2.5 concentrations in Air Quality HCMC dataset. Only… More >

  • Open Access


    Hyperparameter Tuned Bidirectional Gated Recurrent Neural Network for Weather Forecasting

    S. Manikandan1,*, B. Nagaraj2

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 761-775, 2022, DOI:10.32604/iasc.2022.023398

    Abstract Weather forecasting is primarily related to the prediction of weather conditions that becomes highly important in diverse applications like drought discovery, severe weather forecast, climate monitoring, agriculture, aviation, telecommunication, etc. Data-driven computer modelling with Artificial Neural Networks (ANN) can be used to solve non-linear problems. Presently, Deep Learning (DL) based weather forecasting models can be designed to accomplish reasonable predictive performance. In this aspect, this study presents a Hyper Parameter Tuned Bidirectional Gated Recurrent Neural Network (HPT-BiGRNN) technique for weather forecasting. The HPT-BiGRNN technique aims to utilize the past weather data for training the BiGRNN model and achieve the effective… More >

  • Open Access


    Surge Fault Detection of Aeroengines Based on Fusion Neural Network

    Desheng Zheng1, Xiaolan Tang1,*, Xinlong Wu1, Kexin Zhang1, Chao Lu2, Lulu Tian3

    Intelligent Automation & Soft Computing, Vol.29, No.3, pp. 815-826, 2021, DOI:10.32604/iasc.2021.017737

    Abstract Aeroengine surge fault is one of the main causes of flight accidents. When a surge occurs, it is hard to detect it in time and take anti-surge measures correctly. Recently, people have been applying detection methods based on mathematical models and expert knowledge. Due to difficult modeling and limited failure-mode coverage of these methods, early surge detection cannot be achieved. To address these problems, firstly, this paper introduced the data of six main sensors related to the aeroengine surge fault, such as, total pressure at compressor (high pressure rotor) outlet (Pt3), high pressure compressor rotor speed (N2), power level angle… More >

  • Open Access


    Stock Price Prediction Using Predictive Error Compensation Wavelet Neural Networks

    Ajla Kulaglic1,*, Burak Berk Ustundag2

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3577-3593, 2021, DOI:10.32604/cmc.2021.014768

    Abstract Machine Learning (ML) algorithms have been widely used for financial time series prediction and trading through bots. In this work, we propose a Predictive Error Compensated Wavelet Neural Network (PEC-WNN) ML model that improves the prediction of next day closing prices. In the proposed model we use multiple neural networks where the first one uses the closing stock prices from multiple-scale time-domain inputs. An additional network is used for error estimation to compensate and reduce the prediction error of the main network instead of using recurrence. The performance of the proposed model is evaluated using six different stock data samples… More >

  • Open Access


    Multi-Span and Multiple Relevant Time Series Prediction Based on Neighborhood Rough Set

    Xiaoli Li1, Shuailing Zhou1, Zixu An2,*, Zhenlong Du1

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3765-3780, 2021, DOI:10.32604/cmc.2021.012422

    Abstract Rough set theory has been widely researched for time series prediction problems such as rainfall runoff. Accurate forecasting of rainfall runoff is a long standing but still mostly significant problem for water resource planning and management, reservoir and river regulation. Most research is focused on constructing the better model for improving prediction accuracy. In this paper, a rainfall runoff forecast model based on the variable-precision fuzzy neighborhood rough set (VPFNRS) is constructed to predict Watershed runoff value. Fuzzy neighborhood rough set define the fuzzy decision of a sample by using the concept of fuzzy neighborhood. The fuzzy neighborhood rough set… More >

  • Open Access


    Prediction of Time Series Empowered with a Novel SREKRLS Algorithm

    Bilal Shoaib1, Yasir Javed2, Muhammad Adnan Khan3,*, Fahad Ahmad4, Rizwan Majeed5, Muhammad Saqib Nawaz1, Muhammad Adeel Ashraf6, Abid Iqbal2, Muhammad Idrees7

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1413-1427, 2021, DOI:10.32604/cmc.2021.015099

    Abstract For the unforced dynamical non-linear statespace model, a new Q1 and efficient square root extended kernel recursive least square estimation algorithm is developed in this article. The proposed algorithm lends itself towards the parallel implementation as in the FPGA systems. With the help of an ortho-normal triangularization method, which relies on numerically stable givens rotation, matrix inversion causes a computational burden, is reduced. Matrix computation possesses many excellent numerical properties such as singularity, symmetry, skew symmetry, and triangularity is achieved by using this algorithm. The proposed method is validated for the prediction of stationary and non-stationary MackeyGlass Time Series, along… More >

  • Open Access


    Brent Oil Price Prediction Using Bi-LSTM Network

    Anh H. Vo1, Trang Nguyen2, Tuong Le1,3,*

    Intelligent Automation & Soft Computing, Vol.26, No.6, pp. 1307-1317, 2020, DOI:10.32604/iasc.2020.013189

    Abstract Brent oil price fluctuates continuously causing instability in the economy. Therefore, it is essential to accurately predict the trend of oil prices, as it helps to improve profits for investors and benefits the community at large. Oil prices usually fluctuate over time as a time series and as such several sequence-based models can be used to predict them. Hence, this study proposes an efficient model named BOP-BL based on Bidirectional Long Short-Term Memory (Bi-LSTM) for oil price prediction. The proposed framework consists of two modules as follows: The first module has three Bi-LSTM layers which help learning useful information features… More >

  • Open Access


    An Abnormal Network Flow Feature Sequence Prediction Approach for DDoS Attacks Detection in Big Data Environment

    Jieren Cheng1,2, Ruomeng Xu1,*, Xiangyan Tang1, Victor S. Sheng3, Canting Cai1

    CMC-Computers, Materials & Continua, Vol.55, No.1, pp. 95-119, 2018, DOI:10.3970/cmc.2018.055.095

    Abstract Distributed denial-of-service (DDoS) is a rapidly growing problem with the fast development of the Internet. There are multitude DDoS detection approaches, however, three major problems about DDoS attack detection appear in the big data environment. Firstly, to shorten the respond time of the DDoS attack detector; secondly, to reduce the required compute resources; lastly, to achieve a high detection rate with low false alarm rate. In the paper, we propose an abnormal network flow feature sequence prediction approach which could fit to be used as a DDoS attack detector in the big data environment and solve aforementioned problems. We define… More >

Displaying 1-10 on page 1 of 8. Per Page