Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (214)
  • Open Access

    ARTICLE

    Spatial Attention Integrated EfficientNet Architecture for Breast Cancer Classification with Explainable AI

    Sannasi Chakravarthy1, Bharanidharan Nagarajan2, Surbhi Bhatia Khan3,7,*, Vinoth Kumar Venkatesan2, Mahesh Thyluru Ramakrishna4, Ahlam Al Musharraf5, Khursheed Aurungzeb6

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 5029-5045, 2024, DOI:10.32604/cmc.2024.052531 - 12 September 2024

    Abstract Breast cancer is a type of cancer responsible for higher mortality rates among women. The cruelty of breast cancer always requires a promising approach for its earlier detection. In light of this, the proposed research leverages the representation ability of pretrained EfficientNet-B0 model and the classification ability of the XGBoost model for the binary classification of breast tumors. In addition, the above transfer learning model is modified in such a way that it will focus more on tumor cells in the input mammogram. Accordingly, the work proposed an EfficientNet-B0 having a Spatial Attention Layer with More >

  • Open Access

    ARTICLE

    A Deep Transfer Learning Approach for Addressing Yaw Pose Variation to Improve Face Recognition Performance

    M. Jayasree1, K. A. Sunitha2,*, A. Brindha1, Punna Rajasekhar3, G. Aravamuthan3, G. Joselin Retnakumar1

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 745-764, 2024, DOI:10.32604/iasc.2024.052983 - 06 September 2024

    Abstract Identifying faces in non-frontal poses presents a significant challenge for face recognition (FR) systems. In this study, we delved into the impact of yaw pose variations on these systems and devised a robust method for detecting faces across a wide range of angles from 0° to ±90°. We initially selected the most suitable feature vector size by integrating the Dlib, FaceNet (Inception-v2), and “Support Vector Machines (SVM)” + “K-nearest neighbors (KNN)” algorithms. To train and evaluate this feature vector, we used two datasets: the “Labeled Faces in the Wild (LFW)” benchmark data and the “Robust… More >

  • Open Access

    ARTICLE

    Importance-Weighted Transfer Learning for Fault Classification under Covariate Shift

    Yi Pan1, Lei Xie2,*, Hongye Su2

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 683-696, 2024, DOI:10.32604/iasc.2023.038543 - 06 September 2024

    Abstract In the process of fault detection and classification, the operation mode usually drifts over time, which brings great challenges to the algorithms. Because traditional machine learning based fault classification cannot dynamically update the trained model according to the probability distribution of the testing dataset, the accuracy of these traditional methods usually drops significantly in the case of covariate shift. In this paper, an importance-weighted transfer learning method is proposed for fault classification in the nonlinear multi-mode industrial process. It effectively alters the drift between the training and testing dataset. Firstly, the mutual information method is… More >

  • Open Access

    REVIEW

    Deep Transfer Learning Techniques in Intrusion Detection System-Internet of Vehicles: A State-of-the-Art Review

    Wufei Wu1, Javad Hassannataj Joloudari2,3,4, Senthil Kumar Jagatheesaperumal5, Kandala N. V. P. S. Rajesh6, Silvia Gaftandzhieva7,*, Sadiq Hussain8, Rahimullah Rabih9, Najibullah Haqjoo10, Mobeen Nazar11, Hamed Vahdat-Nejad9, Rositsa Doneva12

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2785-2813, 2024, DOI:10.32604/cmc.2024.053037 - 15 August 2024

    Abstract The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles (IoV) technology. The functional advantages of IoV include online communication services, accident prevention, cost reduction, and enhanced traffic regularity. Despite these benefits, IoV technology is susceptible to cyber-attacks, which can exploit vulnerabilities in the vehicle network, leading to perturbations, disturbances, non-recognition of traffic signs, accidents, and vehicle immobilization. This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning (DTL) models for Intrusion Detection Systems in the Internet of Vehicles (IDS-IoV) based on anomaly… More >

  • Open Access

    ARTICLE

    Enhancing Mild Cognitive Impairment Detection through Efficient Magnetic Resonance Image Analysis

    Atif Mehmood1,2, Zhonglong Zheng1,*, Rizwan Khan1, Ahmad Al Smadi3, Farah Shahid1,2, Shahid Iqbal4, Mutasem K. Alsmadi5, Yazeed Yasin Ghadi6, Syed Aziz Shah8, Mostafa M. Ibrahim7

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2081-2098, 2024, DOI:10.32604/cmc.2024.046869 - 15 August 2024

    Abstract Neuroimaging has emerged over the last few decades as a crucial tool in diagnosing Alzheimer’s disease (AD). Mild cognitive impairment (MCI) is a condition that falls between the spectrum of normal cognitive function and AD. However, previous studies have mainly used handcrafted features to classify MCI, AD, and normal control (NC) individuals. This paper focuses on using gray matter (GM) scans obtained through magnetic resonance imaging (MRI) for the diagnosis of individuals with MCI, AD, and NC. To improve classification performance, we developed two transfer learning strategies with data augmentation (i.e., shear range, rotation, zoom… More >

  • Open Access

    ARTICLE

    Deep Transfer Learning Models for Mobile-Based Ocular Disorder Identification on Retinal Images

    Roseline Oluwaseun Ogundokun1,2, Joseph Bamidele Awotunde3, Hakeem Babalola Akande4, Cheng-Chi Lee5,6,*, Agbotiname Lucky Imoize7,8

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 139-161, 2024, DOI:10.32604/cmc.2024.052153 - 18 July 2024

    Abstract Mobile technology is developing significantly. Mobile phone technologies have been integrated into the healthcare industry to help medical practitioners. Typically, computer vision models focus on image detection and classification issues. MobileNetV2 is a computer vision model that performs well on mobile devices, but it requires cloud services to process biometric image information and provide predictions to users. This leads to increased latency. Processing biometrics image datasets on mobile devices will make the prediction faster, but mobiles are resource-restricted devices in terms of storage, power, and computational speed. Hence, a model that is small in size,… More >

  • Open Access

    ARTICLE

    Knowledge Reasoning Method Based on Deep Transfer Reinforcement Learning: DTRLpath

    Shiming Lin1,2,3, Ling Ye2, Yijie Zhuang1, Lingyun Lu2,*, Shaoqiu Zheng2,*, Chenxi Huang1, Ng Yin Kwee4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 299-317, 2024, DOI:10.32604/cmc.2024.051379 - 18 July 2024

    Abstract In recent years, with the continuous development of deep learning and knowledge graph reasoning methods, more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning. By searching paths on the knowledge graph and making fact and link predictions based on these paths, deep learning-based Reinforcement Learning (RL) agents can demonstrate good performance and interpretability. Therefore, deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic. However, even in a small and fixed knowledge graph reasoning action… More >

  • Open Access

    ARTICLE

    Deep Learning Based Efficient Crowd Counting System

    Waleed Khalid Al-Ghanem1, Emad Ul Haq Qazi2,*, Muhammad Hamza Faheem2, Syed Shah Amanullah Quadri3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4001-4020, 2024, DOI:10.32604/cmc.2024.048208 - 20 June 2024

    Abstract Estimation of crowd count is becoming crucial nowadays, as it can help in security surveillance, crowd monitoring, and management for different events. It is challenging to determine the approximate crowd size from an image of the crowd’s density. Therefore in this research study, we proposed a multi-headed convolutional neural network architecture-based model for crowd counting, where we divided our proposed model into two main components: (i) the convolutional neural network, which extracts the feature across the whole image that is given to it as an input, and (ii) the multi-headed layers, which make it easier More >

  • Open Access

    REVIEW

    A Review of NILM Applications with Machine Learning Approaches

    Maheesha Dhashantha Silva*, Qi Liu

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2971-2989, 2024, DOI:10.32604/cmc.2024.051289 - 15 May 2024

    Abstract In recent years, Non-Intrusive Load Monitoring (NILM) has become an emerging approach that provides affordable energy management solutions using aggregated load obtained from a single smart meter in the power grid. Furthermore, by integrating Machine Learning (ML), NILM can efficiently use electrical energy and offer less of a burden for the energy monitoring process. However, conducted research works have limitations for real-time implementation due to the practical issues. This paper aims to identify the contribution of ML approaches to developing a reliable Energy Management (EM) solution with NILM. Firstly, phases of the NILM are discussed,… More >

  • Open Access

    ARTICLE

    RoGRUT: A Hybrid Deep Learning Model for Detecting Power Trapping in Smart Grids

    Farah Mohammad1,*, Saad Al-Ahmadi2, Jalal Al-Muhtadi1,2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3175-3192, 2024, DOI:10.32604/cmc.2023.042873 - 15 May 2024

    Abstract Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users. It hinders the economic growth of utility companies, poses electrical risks, and impacts the high energy costs borne by consumers. The development of smart grids is crucial for the identification of power theft since these systems create enormous amounts of data, including information on client consumption, which may be used to identify electricity theft using machine learning and deep learning techniques. Moreover, there also exist different solutions such as hardware-based solutions to detect electricity theft that… More >

Displaying 31-40 on page 4 of 214. Per Page