Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (45)
  • Open Access

    REVIEW

    Mesenchymal stem cell-derived exosome as a nano weapon to target the COVID-19 pandemic

    YASHVI SHARMA, SUCHI GUPTA, SUJATA MOHANTY*

    BIOCELL, Vol.45, No.3, pp. 517-520, 2021, DOI:10.32604/biocell.2021.014621

    Abstract In these times of despair when a nano-sized organism, the SARS-CoV-2, has rendered the human race helpless, made the global health status decline, and drowned the world economy, a ray of hope comes from another nano-sized particle, the exosome. The potential of mesenchymal stem cells has already been established in COVID-19; however, cell-based therapy has its risks. We thereby propose cell-free therapy using stem cells-derived exosomes to fight against COVID-19, as they can be a game-changer owing to their immunomodulatory nature, which combats the cytokine storm characterizing this disease, and their practical efficiency, which will realistically aid large access to… More >

  • Open Access

    ARTICLE

    Exosomes derived from osteoclasts under compression stress inhibit osteoblast differentiation

    YUE WANG, YUNFEI ZHENG*, WEIRAN LI*

    BIOCELL, Vol.45, No.2, pp. 427-444, 2021, DOI:10.32604/biocell.2021.013960

    Abstract Orthodontic tooth movement is triggered by orthodontic force loading on the periodontal ligament and is achieved by alveolar bone remodeling, which is regulated by intimate crosstalk between osteoclastogenesis and osteoblast differentiation. Whether the communication between osteoclasts and osteoblasts is influenced by orthodontic compression stress requires further clarification. In this study, osteoclasts were differentiated for 10 days. On day 4 of differentiation, the number of pre-osteoclasts peaked, as determined by the increased expression of RANK and the number of multinucleated cells. After 24 h of compression stress loading, on day 4, the number of osteoclasts increased, and the optimal magnitude of… More >

  • Open Access

    ARTICLE

    Basing on microRNA-mRNA analysis identifies microRNA in exosomes associated with wound repair of diabetic ulcers

    PENG LIU1,2, ANFANG ZOU3, QI CHEN4, BIAO CHENG1,*, QIN LI1,*

    BIOCELL, Vol.45, No.1, pp. 27-39, 2021, DOI:10.32604/biocell.2021.012601

    Abstract The diabetic ulcer is one of the serious complications of diabetes. In this study, we aimed to establish an exosomal microRNA (miRNA)-targeted messenger RNA (mRNA) regulatory network for screening new biomarkers for diabetic ulcer treatment. For this purpose, exosomes were extracted from bone marrow stem cells (BMSCs) collected from diabetic ulcer patients and healthy adults. The miRNAs in exosomes was detected by high-throughput sequencing analysis. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the differential miRNAs were performed. The miRNA-mRNA regulatory network between candidate miRNAs and their target genes were constructed by… More >

  • Open Access

    ARTICLE

    Exosomes derived from circBCRC-3-knockdown mesenchymal stem cells promoted macrophage polarization

    QI SONG1, JUN ZHANG1, QIANG ZHANG1, JING LIU1, KE LV1, JIALU YAO1,2,3,*, YAFENG ZHOU2,3,*

    BIOCELL, Vol.44, No.4, pp. 623-629, 2020, DOI:10.32604/biocell.2020.012645

    Abstract Macrophages play an essential role in the myocardial ischemia-reperfusion injury (MIRI), and the macrophage shifting from M1 to M2 phenotypes might be a potential strategy for the treatment of MIRI. It has been reported that miR-182 plays an important role in MSC-Exo-associated macrophage polarization. As circBCRC-3 is a newly discovered circle RNA that worked as a sponge of miR-182, this research aimed to find if circBCRC-3 plays a role in MSC-Exo-associated macrophage polarization. Firstly, circBCRC-3 was identified by divergent primers in mesenchymal stem cells (MSCs). Secondly, the exosome of MSCs was isolated and identified by transmission electron microscopy (TEM), nanoparticle-tracking… More >

  • Open Access

    REVIEW

    Review : Reticulocyte maturation: mitoptosis and exosome release

    CHARLES GÉMINARD, AUDE DE GASSART, MICHEL VIDAL

    BIOCELL, Vol.26, No.2, pp. 205-215, 2002, DOI:10.32604/biocell.2002.26.205

    Abstract During the differentiation of erythroid cells, a vast program of maturation takes place, leading to decay or elimination of organelles, including the nucleus, mitochondria, ribosomes, lysosomes, endoplasmic reticulum and Golgi apparatus. During the last step of red cell maturation, remaining organelles, primarily mitochondria and ribosomes but also vestiges of others are finally cleared from the cell. This cleaning session also affects specific proteins that are partially or entirely removed from the cell surface. The interplay of the various events and their causal relationships are approached here. More >

Displaying 41-50 on page 5 of 45. Per Page