Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (169)
  • Open Access

    ARTICLE

    Numerical Study of the Biomechanical Behavior of a 3D Printed Polymer Esophageal Stent in the Esophagus by BP Neural Network Algorithm

    Guilin Wu1,2, Shenghua Huang1, Tingting Liu3, Zhuoni Yang3, Yuesong Wu2, Guihong Wei1, Peng Yu1,*, Qilin Zhang4, Jun Feng4, Bo Zeng5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2709-2725, 2024, DOI:10.32604/cmes.2023.031399 - 15 December 2023

    Abstract Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life and prognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice. However, esophageal stents of different types and parameters have varying adaptability and effectiveness for patients, and they need to be individually selected according to the patient’s specific situation. The purpose of this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3D printing technology to fabricate esophageal stents with different ratios of… More >

  • Open Access

    ARTICLE

    Tensile Failure Characterization of Glass/Epoxy Composites using Acoustic Emission RMS Data

    K. KRISHNAMOORTHYa,*, N. PRABHUb

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 215-226, 2023, DOI:10.32381/JPM.2023.40.3-4.7

    Abstract The acoustic emission monitoring with artificial neural networks predicts the ultimate strength of glass/epoxy composite laminates using Acoustic Emission Data. The ultimate loads of all the specimens were used to characterise the emission of hits during failure modes. The six layered glass fiber laminates were prepared (in woven mat form) with epoxy as the binding medium by hand lay-up technique. At room temperature, with a pressure of 30 kg/cm2, the laminates were cured. The laminates of standard dimensions as per ASTM D3039 for the tensile test were cut from the lamina. The Acoustic Emission (AE) test More >

  • Open Access

    ARTICLE

    Intrusion Detection System with Customized Machine Learning Techniques for NSL-KDD Dataset

    Mohammed Zakariah1, Salman A. AlQahtani2,*, Abdulaziz M. Alawwad1, Abdullilah A. Alotaibi3

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 4025-4054, 2023, DOI:10.32604/cmc.2023.043752 - 26 December 2023

    Abstract Modern networks are at risk from a variety of threats as a result of the enormous growth in internet-based traffic. By consuming time and resources, intrusive traffic hampers the efficient operation of network infrastructure. An effective strategy for preventing, detecting, and mitigating intrusion incidents will increase productivity. A crucial element of secure network traffic is Intrusion Detection System (IDS). An IDS system may be host-based or network-based to monitor intrusive network activity. Finding unusual internet traffic has become a severe security risk for intelligent devices. These systems are negatively impacted by several attacks, which are… More >

  • Open Access

    ARTICLE

    Empirical Analysis of Neural Networks-Based Models for Phishing Website Classification Using Diverse Datasets

    Shoaib Khan, Bilal Khan, Saifullah Jan*, Subhan Ullah, Aiman

    Journal of Cyber Security, Vol.5, pp. 47-66, 2023, DOI:10.32604/jcs.2023.045579 - 28 December 2023

    Abstract Phishing attacks pose a significant security threat by masquerading as trustworthy entities to steal sensitive information, a problem that persists despite user awareness. This study addresses the pressing issue of phishing attacks on websites and assesses the performance of three prominent Machine Learning (ML) models—Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM)—utilizing authentic datasets sourced from Kaggle and Mendeley repositories. Extensive experimentation and analysis reveal that the CNN model achieves a better accuracy of 98%. On the other hand, LSTM shows the lowest accuracy of 96%. These findings underscore the More >

  • Open Access

    ARTICLE

    Adaptive Momentum-Backpropagation Algorithm for Flood Prediction and Management in the Internet of Things

    Jayaraj Thankappan1, Delphin Raj Kesari Mary2, Dong Jin Yoon3, Soo-Hyun Park4,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1053-1079, 2023, DOI:10.32604/cmc.2023.038437 - 31 October 2023

    Abstract Flooding is a hazardous natural calamity that causes significant damage to lives and infrastructure in the real world. Therefore, timely and accurate decision-making is essential for mitigating flood-related damages. The traditional flood prediction techniques often encounter challenges in accuracy, timeliness, complexity in handling dynamic flood patterns and leading to substandard flood management strategies. To address these challenges, there is a need for advanced machine learning models that can effectively analyze Internet of Things (IoT)-generated flood data and provide timely and accurate flood predictions. This paper proposes a novel approach-the Adaptive Momentum and Backpropagation (AM-BP) algorithm-for… More >

  • Open Access

    ARTICLE

    Hybrid Malware Variant Detection Model with Extreme Gradient Boosting and Artificial Neural Network Classifiers

    Asma A. Alhashmi1, Abdulbasit A. Darem1,*, Sultan M. Alanazi1, Abdullah M. Alashjaee2, Bader Aldughayfiq3, Fuad A. Ghaleb4,5, Shouki A. Ebad1, Majed A. Alanazi1

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3483-3498, 2023, DOI:10.32604/cmc.2023.041038 - 08 October 2023

    Abstract In an era marked by escalating cybersecurity threats, our study addresses the challenge of malware variant detection, a significant concern for a multitude of sectors including petroleum and mining organizations. This paper presents an innovative Application Programmable Interface (API)-based hybrid model designed to enhance the detection performance of malware variants. This model integrates eXtreme Gradient Boosting (XGBoost) and an Artificial Neural Network (ANN) classifier, offering a potent response to the sophisticated evasion and obfuscation techniques frequently deployed by malware authors. The model’s design capitalizes on the benefits of both static and dynamic analysis to extract… More >

  • Open Access

    ARTICLE

    An Efficient MPPT Tracking in Solar PV System with Smart Grid Enhancement Using CMCMAC Protocol

    B. Jegajothi1,*, Sundaram Arumugam2, Neeraj Kumar Shukla3, I. Kathir4, P. Yamunaa5, Monia Digra6

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2417-2437, 2023, DOI:10.32604/csse.2023.038074 - 28 July 2023

    Abstract Renewable energy sources like solar, wind, and hydro are becoming increasingly popular due to the fewer negative impacts they have on the environment. Because, Since the production of renewable energy sources is still in the process of being created, photovoltaic (PV) systems are commonly utilized for installation situations that are acceptable, clean, and simple. This study presents an adaptive artificial intelligence approach that can be used for maximum power point tracking (MPPT) in solar systems with the help of an embedded controller. The adaptive method incorporates both the Whale Optimization Algorithm (WOA) and the Artificial… More >

  • Open Access

    ARTICLE

    A Productivity Prediction Method Based on Artificial Neural Networks and Particle Swarm Optimization for Shale-Gas Horizontal Wells

    Bin Li*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2729-2748, 2023, DOI:10.32604/fdmp.2023.029649 - 25 June 2023

    Abstract In order to overcome the deficiencies of current methods for the prediction of the productivity of shale gas horizontal wells after fracturing, a new sophisticated approach is proposed in this study. This new model stems from the combination several techniques, namely, artificial neural network (ANN), particle swarm optimization (PSO), Imperialist Competitive Algorithms (ICA), and Ant Clony Optimization (ACO). These are properly implemented by using the geological and engineering parameters collected from 317 wells. The results show that the optimum PSO-ANN model has a high accuracy, obtaining a R2 of 0.847 on the testing. The partial dependence More >

  • Open Access

    ARTICLE

    Line Fault Detection of DC Distribution Networks Using the Artificial Neural Network

    Xunyou Zhang1,2,*, Chuanyang Liu1,3, Zuo Sun1

    Energy Engineering, Vol.120, No.7, pp. 1667-1683, 2023, DOI:10.32604/ee.2023.025186 - 04 May 2023

    Abstract A DC distribution network is an effective solution for increasing renewable energy utilization with distinct benefits, such as high efficiency and easy control. However, a sudden increase in the current after the occurrence of faults in the network may adversely affect network stability. This study proposes an artificial neural network (ANN)-based fault detection and protection method for DC distribution networks. The ANN is applied to a classifier for different faults on the DC line. The backpropagation neural network is used to predict the line current, and the fault detection threshold is obtained on the basis More >

  • Open Access

    ARTICLE

    Artificial Neural Network-Based Development of an Efficient Energy Management Strategy for Office Building

    Payal Soni, J. Subhashini*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1225-1242, 2023, DOI:10.32604/iasc.2023.038155 - 29 April 2023

    Abstract In the current context, a smart grid has replaced the conventional grid through intelligent energy management, integration of renewable energy sources (RES) and two-way communication infrastructures from power generation to distribution. Energy management from the distribution side is a critical problem for balancing load demand. A unique energy management strategy (EMS) is being developed for office building equipment. That includes renewable energy integration, automation, and control based on the Artificial Neural Network (ANN) system using Matlab Simulink. This strategy reduces electric power consumption and balances the load demand of the traditional grid. This strategy is More >

Displaying 41-50 on page 5 of 169. Per Page