Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (165)
  • Open Access

    ARTICLE

    Multi-Perspective Data Fusion Framework Based on Hierarchical BERT: Provide Visual Predictions of Business Processes

    Yongwang Yuan1, Xiangwei Liu2,3,*, Ke Lu1,3

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1227-1252, 2024, DOI:10.32604/cmc.2023.046937 - 30 January 2024

    Abstract Predictive Business Process Monitoring (PBPM) is a significant research area in Business Process Management (BPM) aimed at accurately forecasting future behavioral events. At present, deep learning methods are widely cited in PBPM research, but no method has been effective in fusing data information into the control flow for multi-perspective process prediction. Therefore, this paper proposes a process prediction method based on the hierarchical BERT and multi-perspective data fusion. Firstly, the first layer BERT network learns the correlations between different category attribute data. Then, the attribute data is integrated into a weighted event-level feature vector and More >

  • Open Access

    ARTICLE

    Real-Time Detection and Instance Segmentation of Strawberry in Unstructured Environment

    Chengjun Wang1,2, Fan Ding2,*, Yiwen Wang1, Renyuan Wu1, Xingyu Yao2, Chengjie Jiang1, Liuyi Ling1

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1481-1501, 2024, DOI:10.32604/cmc.2023.046876 - 30 January 2024

    Abstract The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots. Real-time identification of strawberries in an unstructured environment is a challenging task. Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy. To this end, the present study proposes an Efficient YOLACT (E-YOLACT) algorithm for strawberry detection and segmentation based on the YOLACT framework. The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism, pyramid squeeze shuffle attention (PSSA), for efficient feature extraction. Additionally, an attention-guided… More >

  • Open Access

    ARTICLE

    An Assisted Diagnosis of Alzheimer’s Disease Incorporating Attention Mechanisms Med-3D Transfer Modeling

    Yanmei Li1,*, Jinghong Tang1, Weiwu Ding1, Jian Luo2, Naveed Ahmad3, Rajesh Kumar4

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 713-733, 2024, DOI:10.32604/cmc.2023.046872 - 30 January 2024

    Abstract Alzheimer’s disease (AD) is a complex, progressive neurodegenerative disorder. The subtle and insidious onset of its pathogenesis makes early detection of a formidable challenge in both contemporary neuroscience and clinical practice. In this study, we introduce an advanced diagnostic methodology rooted in the Med-3D transfer model and enhanced with an attention mechanism. We aim to improve the precision of AD diagnosis and facilitate its early identification. Initially, we employ a spatial normalization technique to address challenges like clarity degradation and unsaturation, which are commonly observed in imaging datasets. Subsequently, an attention mechanism is incorporated to More >

  • Open Access

    ARTICLE

    Printed Circuit Board (PCB) Surface Micro Defect Detection Model Based on Residual Network with Novel Attention Mechanism

    Xinyu Hu, Defeng Kong*, Xiyang Liu, Junwei Zhang, Daode Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 915-933, 2024, DOI:10.32604/cmc.2023.046376 - 30 January 2024

    Abstract Printed Circuit Board (PCB) surface tiny defect detection is a difficult task in the integrated circuit industry, especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks. To improve the performance of PCB surface tiny defects detection, a PCB tiny defects detection model based on an improved attention residual network (YOLOX-AttResNet) is proposed. First, the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet (Squeeze and Excitation Network) attention… More >

  • Open Access

    ARTICLE

    Network Configuration Entity Extraction Method Based on Transformer with Multi-Head Attention Mechanism

    Yang Yang1, Zhenying Qu1, Zefan Yan1, Zhipeng Gao1,*, Ti Wang2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 735-757, 2024, DOI:10.32604/cmc.2023.045807 - 30 January 2024

    Abstract Nowadays, ensuring the quality of network services has become increasingly vital. Experts are turning to knowledge graph technology, with a significant emphasis on entity extraction in the identification of device configurations. This research paper presents a novel entity extraction method that leverages a combination of active learning and attention mechanisms. Initially, an improved active learning approach is employed to select the most valuable unlabeled samples, which are subsequently submitted for expert labeling. This approach successfully addresses the problems of isolated points and sample redundancy within the network configuration sample set. Then the labeled samples are… More >

  • Open Access

    ARTICLE

    An Improved Solov2 Based on Attention Mechanism and Weighted Loss Function for Electrical Equipment Instance Segmentation

    Junpeng Wu1,2,*, Zhenpeng Liu2, Xingfan Jiang2, Xinguang Tao2, Ye Zhang3

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 677-694, 2024, DOI:10.32604/cmc.2023.045759 - 30 January 2024

    Abstract The current existing problem of deep learning framework for the detection and segmentation of electrical equipment is dominantly related to low precision. Because of the reliable, safe and easy-to-operate technology provided by deep learning-based video surveillance for unmanned inspection of electrical equipment, this paper uses the bottleneck attention module (BAM) attention mechanism to improve the Solov2 model and proposes a new electrical equipment segmentation mode. Firstly, the BAM attention mechanism is integrated into the feature extraction network to adaptively learn the correlation between feature channels, thereby improving the expression ability of the feature map; secondly,… More >

  • Open Access

    ARTICLE

    A New Vehicle Detection Framework Based on Feature-Guided in the Road Scene

    Tianmin Deng*, Xiyue Zhang, Xinxin Cheng

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 533-549, 2024, DOI:10.32604/cmc.2023.044639 - 30 January 2024

    Abstract Vehicle detection plays a crucial role in the field of autonomous driving technology. However, directly applying deep learning-based object detection algorithms to complex road scene images often leads to subpar performance and slow inference speeds in vehicle detection. Achieving a balance between accuracy and detection speed is crucial for real-time object detection in real-world road scenes. This paper proposes a high-precision and fast vehicle detector called the feature-guided bidirectional pyramid network (FBPN). Firstly, to tackle challenges like vehicle occlusion and significant background interference, the efficient feature filtering module (EFFM) is introduced into the deep network,… More >

  • Open Access

    ARTICLE

    Image Inpainting Technique Incorporating Edge Prior and Attention Mechanism

    Jinxian Bai, Yao Fan*, Zhiwei Zhao, Lizhi Zheng

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 999-1025, 2024, DOI:10.32604/cmc.2023.044612 - 30 January 2024

    Abstract Recently, deep learning-based image inpainting methods have made great strides in reconstructing damaged regions. However, these methods often struggle to produce satisfactory results when dealing with missing images with large holes, leading to distortions in the structure and blurring of textures. To address these problems, we combine the advantages of transformers and convolutions to propose an image inpainting method that incorporates edge priors and attention mechanisms. The proposed method aims to improve the results of inpainting large holes in images by enhancing the accuracy of structure restoration and the ability to recover texture details. This… More >

  • Open Access

    ARTICLE

    Multimodal Sentiment Analysis Based on a Cross-Modal Multihead Attention Mechanism

    Lujuan Deng, Boyi Liu*, Zuhe Li

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1157-1170, 2024, DOI:10.32604/cmc.2023.042150 - 30 January 2024

    Abstract Multimodal sentiment analysis aims to understand people’s emotions and opinions from diverse data. Concatenating or multiplying various modalities is a traditional multi-modal sentiment analysis fusion method. This fusion method does not utilize the correlation information between modalities. To solve this problem, this paper proposes a model based on a multi-head attention mechanism. First, after preprocessing the original data. Then, the feature representation is converted into a sequence of word vectors and positional encoding is introduced to better understand the semantic and sequential information in the input sequence. Next, the input coding sequence is fed into… More >

  • Open Access

    ARTICLE

    YOLO-DD: Improved YOLOv5 for Defect Detection

    Jinhai Wang1, Wei Wang1, Zongyin Zhang1, Xuemin Lin1, Jingxian Zhao1, Mingyou Chen1, Lufeng Luo2,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 759-780, 2024, DOI:10.32604/cmc.2023.041600 - 30 January 2024

    Abstract As computer technology continues to advance, factories have increasingly higher demands for detecting defects. However, detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes. To address this issue, this paper proposes YOLO-DD, a defect detection model based on YOLOv5 that is effective and robust. To improve the feature extraction process and better capture global information, the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer (RDAT). Additionally, an Information Gap Filling Strategy (IGFS) is proposed to improve the… More >

Displaying 61-70 on page 7 of 165. Per Page