Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (258)
  • Open Access

    ARTICLE

    Deep Learning-Based Health Assessment Method for Benzene-to-Ethylene Ratio Control Systems under Incomplete Data

    Huichao Cao1,*, Honghe Du1, Dongnian Jiang1, Wei Li1, Lei Du1, Jianfeng Yang2

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1305-1325, 2025, DOI:10.32604/sdhm.2025.066002 - 05 September 2025

    Abstract In the production processes of modern industry, accurate assessment of the system’s health state and traceability non-optimal factors are key to ensuring “safe, stable, long-term, full load and optimal” operation of the production process. The benzene-to-ethylene ratio control system is a complex system based on an MPC-PID double-layer architecture. Taking into consideration the interaction between levels, coupling between loops and conditions of incomplete operation data, this paper proposes a health assessment method for the dual-layer control system by comprehensively utilizing deep learning technology. Firstly, according to the results of the pre-assessment of the system layers… More >

  • Open Access

    ARTICLE

    Intelligent Concrete Defect Identification Using an Attention-Enhanced VGG16-U-Net

    Caiping Huang*, Hui Li, Zihang Yu

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1287-1304, 2025, DOI:10.32604/sdhm.2025.065930 - 05 September 2025

    Abstract Semantic segmentation of concrete bridge defect images frequently encounters challenges due to insufficient precision and the limited computational capabilities of mobile devices, thereby considerably affecting the reliability of bridge defect monitoring and health assessment. To tackle these issues, a concrete defects dataset (including spalling, crack, and exposed steel rebar) was curated and multiple semantic segmentation models were developed. In these models, a deep convolutional network or a lightweight convolutional network were employed as the backbone feature extraction networks, with different loss functions configured and various attention mechanism modules introduced for conducting multi-angle comparative research. The… More >

  • Open Access

    ARTICLE

    BES-Net: A Complex Road Vehicle Detection Algorithm Based on Multi-Head Self-Attention Mechanism

    Heng Wang1, Jian-Hua Qin2,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1037-1052, 2025, DOI:10.32604/cmc.2025.067650 - 29 August 2025

    Abstract Vehicle detection is a crucial aspect of intelligent transportation systems (ITS) and autonomous driving technologies. The complexity and diversity of real-world road environments, coupled with traffic congestion, pose significant challenges to the accuracy and real-time performance of vehicle detection models. To address these challenges, this paper introduces a fast and accurate vehicle detection algorithm named BES-Net. Firstly, the BoTNet module is integrated into the backbone network to bolster the model’s long-distance dependency, address the complexities and diversity of road environments, and accelerate the detection speed of the BES-Net network. Secondly, to accommodate the varying sizes… More >

  • Open Access

    ARTICLE

    Image Steganalysis Based on an Adaptive Attention Mechanism and Lightweight DenseNet

    Zhenxiang He*, Rulin Wu, Xinyuan Wang

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1631-1651, 2025, DOI:10.32604/cmc.2025.067252 - 29 August 2025

    Abstract With the continuous advancement of steganographic techniques, the task of image steganalysis has become increasingly challenging, posing significant obstacles to the fields of information security and digital forensics. Although existing deep learning methods have achieved certain progress in steganography detection, they still encounter several difficulties in real-world applications. Specifically, current methods often struggle to accurately focus on steganography sensitive regions, leading to limited detection accuracy. Moreover, feature information is frequently lost during transmission, which further reduces the model’s generalization ability. These issues not only compromise the reliability of steganography detection but also hinder its applicability… More >

  • Open Access

    ARTICLE

    A Co-Attention Mechanism into a Combined GNN-Based Model for Fake News Detection

    Soufiane Khedairia1, Akram Bennour2,*, Mouaaz Nahas3, Aida Chefrour1, Rashiq Rafiq Marie4, Mohammed Al-Sarem5

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1267-1285, 2025, DOI:10.32604/cmc.2025.066601 - 29 August 2025

    Abstract These days, social media has grown to be an integral part of people’s lives. However, it involves the possibility of exposure to “fake news,” which may contain information that is intentionally or inaccurately false to promote particular political or economic interests. The main objective of this work is to use the co-attention mechanism in a Combined Graph neural network model (CMCG) to capture the relationship between user profile features and user preferences in order to detect fake news and examine the influence of various social media features on fake news detection. The proposed approach includes… More >

  • Open Access

    ARTICLE

    Multi-Modal Attention Networks for Driving Style-Aware Trajectory Prediction in Autonomous Driving

    Lang Ding, Qinmu Wu*, Jiaheng Li, Tao Hong, Linqing Bian

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1999-2020, 2025, DOI:10.32604/cmc.2025.066423 - 29 August 2025

    Abstract Trajectory prediction is a critical task in autonomous driving systems. It enables vehicles to anticipate the future movements of surrounding traffic participants, which facilitates safe and human-like decision-making in the planning and control layers. However, most existing approaches rely on end-to-end deep learning architectures that overlook the influence of driving style on trajectory prediction. These methods often lack explicit modeling of semantic driving behavior and effective interaction mechanisms, leading to potentially unrealistic predictions. To address these limitations, we propose the Driving Style Guided Trajectory Prediction framework (DSG-TP), which incorporates a probabilistic representation of driving style… More >

  • Open Access

    ARTICLE

    Face Forgery Detection via Multi-Scale Dual-Modality Mutual Enhancement Network

    Yuanqing Ding1,2, Hanming Zhai1, Qiming Ma1, Liang Zhang1, Lei Shao2, Fanliang Bu1,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 905-923, 2025, DOI:10.32604/cmc.2025.066307 - 29 August 2025

    Abstract As the use of deepfake facial videos proliferate, the associated threats to social security and integrity cannot be overstated. Effective methods for detecting forged facial videos are thus urgently needed. While many deep learning-based facial forgery detection approaches show promise, they often fail to delve deeply into the complex relationships between image features and forgery indicators, limiting their effectiveness to specific forgery techniques. To address this challenge, we propose a dual-branch collaborative deepfake detection network. The network processes video frame images as input, where a specialized noise extraction module initially extracts the noise feature maps.… More >

  • Open Access

    ARTICLE

    A YOLOv11-Based Deep Learning Framework for Multi-Class Human Action Recognition

    Nayeemul Islam Nayeem1, Shirin Mahbuba1, Sanjida Islam Disha1, Md Rifat Hossain Buiyan1, Shakila Rahman1,*, M. Abdullah-Al-Wadud2, Jia Uddin3,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1541-1557, 2025, DOI:10.32604/cmc.2025.065061 - 29 August 2025

    Abstract Human activity recognition is a significant area of research in artificial intelligence for surveillance, healthcare, sports, and human-computer interaction applications. The article benchmarks the performance of You Only Look Once version 11-based (YOLOv11-based) architecture for multi-class human activity recognition. The article benchmarks the performance of You Only Look Once version 11-based (YOLOv11-based) architecture for multi-class human activity recognition. The dataset consists of 14,186 images across 19 activity classes, from dynamic activities such as running and swimming to static activities such as sitting and sleeping. Preprocessing included resizing all images to 512 512 pixels, annotating them… More >

  • Open Access

    ARTICLE

    Research on Multimodal AIGC Video Detection for Identifying Fake Videos Generated by Large Models

    Yong Liu1,2, Tianning Sun3,*, Daofu Gong1,4, Li Di5, Xu Zhao1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1161-1184, 2025, DOI:10.32604/cmc.2025.062330 - 29 August 2025

    Abstract To address the high-quality forged videos, traditional approaches typically have low recognition accuracy and tend to be easily misclassified. This paper tries to address the challenge of detecting high-quality deepfake videos by promoting the accuracy of Artificial Intelligence Generated Content (AIGC) video authenticity detection with a multimodal information fusion approach. First, a high-quality multimodal video dataset is collected and normalized, including resolution correction and frame rate unification. Next, feature extraction techniques are employed to draw out features from visual, audio, and text modalities. Subsequently, these features are fused into a multilayer perceptron and attention mechanisms-based More >

  • Open Access

    ARTICLE

    Attention-Augmented YOLOv8 with Ghost Convolution for Real-Time Vehicle Detection in Intelligent Transportation Systems

    Syed Sajid Ullah1,*, Muhammad Zunair Zamir2, Ahsan Ishfaq2, Salman Khan1

    Journal on Artificial Intelligence, Vol.7, pp. 255-274, 2025, DOI:10.32604/jai.2025.069008 - 29 August 2025

    Abstract Accurate vehicle detection is essential for autonomous driving, traffic monitoring, and intelligent transportation systems. This paper presents an enhanced YOLOv8n model that incorporates the Ghost Module, Convolutional Block Attention Module (CBAM), and Deformable Convolutional Networks v2 (DCNv2). The Ghost Module streamlines feature generation to reduce redundancy, CBAM applies channel and spatial attention to improve feature focus, and DCNv2 enables adaptability to geometric variations in vehicle shapes. These components work together to improve both accuracy and computational efficiency. Evaluated on the KITTI dataset, the proposed model achieves 95.4% mAP@0.5—an 8.97% gain over standard YOLOv8n—along with 96.2% More >

Displaying 41-50 on page 5 of 258. Per Page