Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (64)
  • Open Access

    ARTICLE

    Design and Analysis of Novel Three-Phase PFC for IM Drives

    V. Kavitha1,*, K. Subramanian2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 231-241, 2023, DOI:10.32604/iasc.2023.024257

    Abstract Induction motor drives (IMDs) can achieve high performance levels comparable to dc motor drives. A major problem in getting high dynamic performance in an IMD is the coupling between the flux and torque producing components of stator current. This is successfully overcome in FOC (Field-Oriented Control) IM, making it to the industry standard control. The performance of an IMD with an improved power quality converter at the front end is presented in this study. In the IMD, boost converter is employed to reduce power quality difficulties at the utility interface. As the boost converter contains only one switch, it results… More >

  • Open Access

    ARTICLE

    Evolutionary Algorithm Based Z-Source DC-DC Boost Converter for Charging EV Battery

    P. Anitha1, K. Karthik Kumar2,*, M. Ravindran2, A. Saravanaselvan2

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 1377-1397, 2022, DOI:10.32604/iasc.2022.025396

    Abstract In this paper, efficient charging of electric vehicle battery from a considered renewable solar photovoltaic source with the help of a modified Z source with efficient boosting topology. Adapting this Z-source converter to act as a voltage gainer with a boosting function allows a solar Photovoltaic (PV) input voltage of 25VDC (Volts Direct Current) to be increased to a designed output voltage of 75VDC at a low duty ratio, resulting in minimal switching loss. The closed-loop steady-state and transient parameters at the output were analyzed and compared using modern evolutionary algorithms. The power range upheld throughout the circuit is around… More >

  • Open Access

    ARTICLE

    PMSG Based Wind Energy Conversion System Using Intelligent MPPT with HGRSC Converter

    S. Kirubadevi*, S. Sutha

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 895-910, 2022, DOI:10.32604/iasc.2022.025395

    Abstract Wind power conversion systems play a significant position in grid-coupled renewable source networks. In this paper, a permanent magnet based synchronous alternator type wind energy scheme is considered for analysis. The enhanced performance of wind power conversion could be reached by improving maximum power point tracking (MPPT) and by modernising the control circuit of the power electronic circuit. The main task is to enrich its performance level by proposing fuzzy gain scheduling (FGS) based optimal torque management for maximum power point tracking. In addition to the improved MPPT, this article analyses different topologies of direct current–direct current (DC–DC) converters such… More >

  • Open Access

    ARTICLE

    Hybrid Renewable Energy System Using Cuckoo Firefly Optimization

    M. E. Shajini Sheeba1,*, P. Jagatheeswari2

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 1141-1156, 2022, DOI:10.32604/iasc.2022.024549

    Abstract With abundant and non-polluting benefits in nature, sources of renewable energy have reached vast concentrations. This paper first discusses the number of MPPT (Maximum Power Point Tracking) techniques utilized by wind and photovoltaic (PV) to create hybrid systems for generating wind-PV energy. This hybrid system complements each other day and night to enable continuous power output. Then, a new MPPT technique was proposed to extract maximum power using a newly developed hybrid optimization algorithm, namely the Cukoo Fire Fly method (CFF). The CFF algorithm is derived from the integration of the cuckoo search (CS) algorithm and the Firefly (FF) optimization… More >

  • Open Access

    ARTICLE

    Optimum Tuning of Photovoltaic System Via Hybrid Maximum Power Point Tracking Technique

    M. Nisha1,*, M. Germin Nisha2

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 1399-1413, 2022, DOI:10.32604/iasc.2022.024482

    Abstract A new methodology is used in this paper, for the optimal tuning of Photovoltaic (PV) by integrating the hybrid Maximum Power Point Tracking (MPPT) algorithms is proposed. The suggested hybrid MPPT algorithms can raise the performance of PV systems under partial shade conditions. It attempts to address the primary research issues in partial shading conditions in PV systems caused by clouds, trees, dirt, and dust. The proposed system computes MPPT utilizing an innovative adaptive model-based approach. In order to manage the input voltage at the Maximum PowerPoint, the MPPT algorithm changes the duty cycle of the switch in the DC-DC… More >

  • Open Access

    ARTICLE

    A Novel Controller for Microgrid Interactive Hybrid Renewable Power Sources

    P. Kavitha*, P. Subha Karuvelam

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 821-836, 2022, DOI:10.32604/iasc.2022.023035

    Abstract In this paper, a self-sufficient electric power generation is proposed by using hybrid renewable sources like solar and wind turbines to favor a smart and green environment. This distributed generation unit is connected to the grid through an 3Φ inverter. The power drawn from the hybrid unit is stored in the batteries to transfer power during the non-availability of power sources. This standalone power conversion and storage system are developed by using power electronic converters and controllers to ensure balanced power flow operation. A PI (Proportional Integral) controller is utilized for generating the PWM (Pulse Width Modulation) pulses for the… More >

  • Open Access

    ARTICLE

    A 78-MHz BW Continuous-Time Sigma-Delta ADC with Programmable VCO Quantizer

    Sha Li1,2, Qiao Meng1,*, Irfan Tariq1, Xi Chen3

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 6079-6090, 2022, DOI:10.32604/cmc.2022.027404

    Abstract This article presents a high speed third-order continuous-time (CT) sigma-delta analog-to-digital converter (SDADC) based on voltage-controlled oscillator (VCO), featuring a digital programmable quantizer structure. To improve the overall performance, not only oversampling technique but also noise-shaping enhancing technique is used to suppress in-band noise. Due to the intrinsic first-order noise-shaping of the VCO quantizer, the proposed third-order SDADC can realize forth-order noise-shaping ideally. As a bright advantage, the proposed programmable VCO quantizer is digital-friendly, which can simplify the design process and improve anti-interference capability of the circuit. A 4-bit programmable VCO quantizer clocked at 2.5 GHz, which is proposed in a… More >

  • Open Access

    ARTICLE

    Efficient Single-Stage Bridgeless AC to DC Converter Using Grey Wolf Optimization

    Prema Kandasamy1,*, K. Prem Kumar2

    Computer Systems Science and Engineering, Vol.43, No.2, pp. 487-499, 2022, DOI:10.32604/csse.2022.021693

    Abstract Bridgeless single-stage converters are used for efficient (alternative current) AC-(direct current) DC conversion. These converters control generators, like electromagnetic meso- and micro-scale generators with low voltage. Power factor correction helps increase the factor of the power supply. The main advantage of the power factor is it shapes the input current for increasing the real power of the AC supply. In this paper, a two-switch bridgeless rectifier topology is designed with a power factor correction capability. For the proposed converter topology to have good power quality parameters, the closed loop scheme, which uses the grey wolf optimization (GWO) algorithm, is implemented.… More >

  • Open Access

    ARTICLE

    Optimized CUK Converter Based 1Φ Grid Tied Photovoltaic System

    S. K. Janarthanan*, C. Kathirvel

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 33-50, 2022, DOI:10.32604/iasc.2022.023165

    Abstract Renewable energy-based power generation, particularly photovoltaic (PV)-connected grid systems, has gained popularity in recent years due to its widespread adoption for residential and commercial customers of all sizes, from kilowatt (KW) to megawatt (MW). The purpose of this work is to demonstrate how an efficient CUK-integrated boost converter with continuous current flow may be used to maximise the output of solar arrays. The constant voltage at the converter output is maintained with increased dynamic performance using a Proportional Integral (PI) controller based on a hybrid optimization technique GWO-PSO (Grey Wolf Optimization-Particle Swarm Optimization). This hybrid solution permits accurate and speedy… More >

  • Open Access

    ARTICLE

    An Insight into the Second-Harmonic Current Reduction Control Strategies in Two-Stage Converters

    Lei Ren, Lei Zhang*

    Energy Engineering, Vol.119, No.3, pp. 1179-1196, 2022, DOI:10.32604/ee.2022.018902

    Abstract Due to the components at twice the fundamental frequency of output voltage in the instantaneous output power of a two-stage single-phase inverter (TSI), the second harmonic current (SHC) is generated in the front-end dc-dc converter (FDC). To reduce the SHC, optimizing the control strategy of the FDC is an effective and costless approach. From the view of visual impedance, this paper conducts an intensive study on the SHC reduction strategies. Origin of the SHC is illustrated first. Then, the equivalent circuit models of the FDC under different control strategies are proposed to analyse the SHC propagation characteristic. The derived model… More >

Displaying 31-40 on page 4 of 64. Per Page