Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (56)
  • Open Access

    ARTICLE

    DeepNeck: Bottleneck Assisted Customized Deep Convolutional Neural Networks for Diagnosing Gastrointestinal Tract Disease

    Sidra Naseem1, Rashid Jahangir1,*, Nazik Alturki2, Faheem Shehzad3, Muhammad Sami Ullah4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2481-2501, 2025, DOI:10.32604/cmes.2025.072575 - 26 November 2025

    Abstract Diagnosing gastrointestinal tract diseases is a critical task requiring accurate and efficient methodologies. While deep learning models have significantly advanced medical image analysis, challenges such as imbalanced datasets and redundant features persist. This study proposes a novel framework that customizes two deep learning models, NasNetMobile and ResNet50, by incorporating bottleneck architectures, named as NasNeck and ResNeck, to enhance feature extraction. The feature vectors are fused into a combined vector, which is further optimized using an improved Whale Optimization Algorithm to minimize redundancy and improve discriminative power. The optimized feature vector is then classified using artificial… More >

  • Open Access

    ARTICLE

    Enhanced Fire Detection System for Blind and Visually Challenged People Using Artificial Intelligence with Deep Convolutional Neural Networks

    Fahd N. Al-Wesabi1,*, Hamad Almansour2, Huda G. Iskandar3,4, Ishfaq Yaseen5

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5765-5787, 2025, DOI:10.32604/cmc.2025.067571 - 23 October 2025

    Abstract Earlier notification and fire detection methods provide safety information and fire prevention to blind and visually impaired (BVI) individuals in a limited timeframe in the event of emergencies, particularly in enclosed areas. Fire detection becomes crucial as it directly impacts human safety and the environment. While modern technology requires precise techniques for early detection to prevent damage and loss, few research has focused on artificial intelligence (AI)-based early fire alert systems for BVI individuals in indoor settings. To prevent such fire incidents, it is crucial to identify fires accurately and promptly, and alert BVI personnel… More >

  • Open Access

    ARTICLE

    Deep Convolution Neural Networks for Image-Based Android Malware Classification

    Amel Ksibi1,*, Mohammed Zakariah2, Latifah Almuqren1, Ala Saleh Alluhaidan1

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4093-4116, 2025, DOI:10.32604/cmc.2025.059615 - 06 March 2025

    Abstract The analysis of Android malware shows that this threat is constantly increasing and is a real threat to mobile devices since traditional approaches, such as signature-based detection, are no longer effective due to the continuously advancing level of sophistication. To resolve this problem, efficient and flexible malware detection tools are needed. This work examines the possibility of employing deep CNNs to detect Android malware by transforming network traffic into image data representations. Moreover, the dataset used in this study is the CIC-AndMal2017, which contains 20,000 instances of network traffic across five distinct malware categories: a.… More >

  • Open Access

    ARTICLE

    Image Copy-Move Forgery Detection and Localization Method Based on Sequence-to-Sequence Transformer Structure

    Gang Hao, Peng Liang*, Ziyuan Li, Huimin Zhao, Hong Zhang

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5221-5238, 2025, DOI:10.32604/cmc.2025.055739 - 06 March 2025

    Abstract In recent years, the detection of image copy-move forgery (CMFD) has become a critical challenge in verifying the authenticity of digital images, particularly as image manipulation techniques evolve rapidly. While deep convolutional neural networks (DCNNs) have been widely employed for CMFD tasks, they are often hindered by a notable limitation: the progressive reduction in spatial resolution during the encoding process, which leads to the loss of critical image details. These details are essential for the accurate detection and localization of image copy-move forgery. To overcome the limitations of existing methods, this paper proposes a Transformer-based… More >

  • Open Access

    ARTICLE

    A Novel Optimized Deep Convolutional Neural Network for Efficient Seizure Stage Classification

    Umapathi Krishnamoorthy1,*, Shanmugam Jagan2, Mohammed Zakariah3, Abdulaziz S. Almazyad4,*, K. Gurunathan5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3903-3926, 2024, DOI:10.32604/cmc.2024.055910 - 19 December 2024

    Abstract Brain signal analysis from electroencephalogram (EEG) recordings is the gold standard for diagnosing various neural disorders especially epileptic seizure. Seizure signals are highly chaotic compared to normal brain signals and thus can be identified from EEG recordings. In the current seizure detection and classification landscape, most models primarily focus on binary classification—distinguishing between seizure and non-seizure states. While effective for basic detection, these models fail to address the nuanced stages of seizures and the intervals between them. Accurate identification of per-seizure or interictal stages and the timing between seizures is crucial for an effective seizure… More >

  • Open Access

    ARTICLE

    Intrusion Detection System for Smart Industrial Environments with Ensemble Feature Selection and Deep Convolutional Neural Networks

    Asad Raza1,*, Shahzad Memon1, Muhammad Ali Nizamani1, Mahmood Hussain Shah2

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 545-566, 2024, DOI:10.32604/iasc.2024.051779 - 11 July 2024

    Abstract Smart Industrial environments use the Industrial Internet of Things (IIoT) for their routine operations and transform their industrial operations with intelligent and driven approaches. However, IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet. Traditional signature-based IDS are effective in detecting known attacks, but they are unable to detect unknown emerging attacks. Therefore, there is the need for an IDS which can learn from data and detect new threats. Ensemble Machine Learning (ML) and individual Deep Learning (DL) based IDS have been developed, and these individual models achieved… More >

  • Open Access

    ARTICLE

    MDCN: Modified Dense Convolution Network Based Disease Classification in Mango Leaves

    Chirag Chandrashekar1, K. P. Vijayakumar1,*, K. Pradeep1, A. Balasundaram1,2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2511-2533, 2024, DOI:10.32604/cmc.2024.047697 - 27 February 2024

    Abstract The most widely farmed fruit in the world is mango. Both the production and quality of the mangoes are hampered by many diseases. These diseases need to be effectively controlled and mitigated. Therefore, a quick and accurate diagnosis of the disorders is essential. Deep convolutional neural networks, renowned for their independence in feature extraction, have established their value in numerous detection and classification tasks. However, it requires large training datasets and several parameters that need careful adjustment. The proposed Modified Dense Convolutional Network (MDCN) provides a successful classification scheme for plant diseases affecting mango leaves. More >

  • Open Access

    ARTICLE

    Deep Convolutional Neural Networks for Accurate Classification of Gastrointestinal Tract Syndromes

    Zahid Farooq Khan1, Muhammad Ramzan1,*, Mudassar Raza1, Muhammad Attique Khan2,3, Khalid Iqbal4, Taerang Kim5, Jae-Hyuk Cha5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1207-1225, 2024, DOI:10.32604/cmc.2023.045491 - 30 January 2024

    Abstract Accurate detection and classification of artifacts within the gastrointestinal (GI) tract frames remain a significant challenge in medical image processing. Medical science combined with artificial intelligence is advancing to automate the diagnosis and treatment of numerous diseases. Key to this is the development of robust algorithms for image classification and detection, crucial in designing sophisticated systems for diagnosis and treatment. This study makes a small contribution to endoscopic image classification. The proposed approach involves multiple operations, including extracting deep features from endoscopy images using pre-trained neural networks such as Darknet-53 and Xception. Additionally, feature optimization… More >

  • Open Access

    ARTICLE

    A Degradation Type Adaptive and Deep CNN-Based Image Classification Model for Degraded Images

    Huanhua Liu, Wei Wang*, Hanyu Liu, Shuheng Yi, Yonghao Yu, Xunwen Yao

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 459-472, 2024, DOI:10.32604/cmes.2023.029084 - 22 September 2023

    Abstract Deep Convolutional Neural Networks (CNNs) have achieved high accuracy in image classification tasks, however, most existing models are trained on high-quality images that are not subject to image degradation. In practice, images are often affected by various types of degradation which can significantly impact the performance of CNNs. In this work, we investigate the influence of image degradation on three typical image classification CNNs and propose a Degradation Type Adaptive Image Classification Model (DTA-ICM) to improve the existing CNNs’ classification accuracy on degraded images. The proposed DTA-ICM comprises two key components: a Degradation Type Predictor… More >

  • Open Access

    ARTICLE

    Deep Convolutional Neural Networks for South Indian Mango Leaf Disease Detection and Classification

    Shaik Thaseentaj, S. Sudhakar Ilango*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3593-3618, 2023, DOI:10.32604/cmc.2023.042496 - 26 December 2023

    Abstract The South Indian mango industry is confronting severe threats due to various leaf diseases, which significantly impact the yield and quality of the crop. The management and prevention of these diseases depend mainly on their early identification and accurate classification. The central objective of this research is to propose and examine the application of Deep Convolutional Neural Networks (CNNs) as a potential solution for the precise detection and categorization of diseases impacting the leaves of South Indian mango trees. Our study collected a rich dataset of leaf images representing different disease classes, including Anthracnose, Powdery… More >

Displaying 1-10 on page 1 of 56. Per Page