Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (611)
  • Open Access

    ARTICLE

    Interaction Mechanisms between Natural Debris Flow and Rigid Barrier Deflectors: A New Perspective for Rational Design and Optimal Arrangement

    Yu Huang1, Beilei Liu1, Dianlei Feng2,*, Hao Shi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1679-1699, 2024, DOI:10.32604/cmes.2023.044094

    Abstract Rigid barrier deflectors can effectively prevent overspilling landslides, and can satisfy disaster prevention requirements. However, the mechanisms of interaction between natural granular flow and rigid barrier deflectors require further investigation. To date, few studies have investigated the impact of deflectors on controlling viscous debris flows for geological disaster prevention. To investigate the effect of rigid barrier deflectors on impact mechanisms, a numerical model using the smoothed particle hydrodynamics (SPH) method with the Herschel–Bulkley model is proposed to simulate the interaction between natural viscous flow and single/dual barriers with and without deflectors. This model was validated using laboratory flume test data… More > Graphic Abstract

    Interaction Mechanisms between Natural Debris Flow and Rigid Barrier Deflectors: A New Perspective for Rational Design and Optimal Arrangement

  • Open Access

    ARTICLE

    An Efficient Reliability-Based Optimization Method Utilizing High-Dimensional Model Representation and Weight-Point Estimation Method

    Xiaoyi Wang1, Xinyue Chang2, Wenxuan Wang1,*, Zijie Qiao3, Feng Zhang3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1775-1796, 2024, DOI:10.32604/cmes.2023.043913

    Abstract The objective of reliability-based design optimization (RBDO) is to minimize the optimization objective while satisfying the corresponding reliability requirements. However, the nested loop characteristic reduces the efficiency of RBDO algorithm, which hinders their application to high-dimensional engineering problems. To address these issues, this paper proposes an efficient decoupled RBDO method combining high dimensional model representation (HDMR) and the weight-point estimation method (WPEM). First, we decouple the RBDO model using HDMR and WPEM. Second, Lagrange interpolation is used to approximate a univariate function. Finally, based on the results of the first two steps, the original nested loop reliability optimization model is… More >

  • Open Access

    ARTICLE

    Crashworthiness Design and Multi-Objective Optimization of Bionic Thin-Walled Hybrid Tube Structures

    Pingfan Li, Jiumei Xiao*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 999-1016, 2024, DOI:10.32604/cmes.2023.044059

    Abstract Thin-walled structures are widely used in cars due to their lightweight construction and energy-absorbing properties. However, issues such as high initial stress and low energy-absorbing efficiency arise. This study proposes a novel energy-absorbing structure in which a straight tube is combined with a conical tube and a bamboo-inspired bulkhead structure is introduced. This configuration allows the conical tube to flip outward first and then fold together with the straight tube. This deformation mode absorbs more energy and less peak force than the conical tube sinking and flipping inward. Through finite element numerical simulation, the specific energy absorption capacity of the… More >

  • Open Access

    ARTICLE

    Parametric Optimization of Wheel Spoke Structure for Drag Reduction of an Ahmed Body

    Huihui Zhai1, Dongqi Jiao2, Haichao Zhou2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 955-975, 2024, DOI:10.32604/cmes.2023.043322

    Abstract The wheels have a considerable influence on the aerodynamic properties and can contribute up to 25% of the total drag on modern vehicles. In this study, the effect of the wheel spoke structure on the aerodynamic performance of the isolated wheel is investigated. Subsequently, the 35° Ahmed body with an optimized spoke structure is used to analyze the flow behavior and the mechanism of drag reduction. The Fluent software is employed for this investigation, with an inlet velocity of 40 m/s. The accuracy of the numerical study is validated by comparing it with experimental results obtained from the classical Ahmed model.… More >

  • Open Access

    ARTICLE

    A Comparative Study of Metaheuristic Optimization Algorithms for Solving Real-World Engineering Design Problems

    Elif Varol Altay, Osman Altay, Yusuf Özçevik*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 1039-1094, 2024, DOI:10.32604/cmes.2023.029404

    Abstract Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve. Such design problems are widely experienced in many engineering fields, such as industry, automotive, construction, machinery, and interdisciplinary research. However, there are established optimization techniques that have shown effectiveness in addressing these types of issues. This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues. The algorithms used in the study are listed as: transient search optimization (TSO), equilibrium optimizer (EO), grey wolf optimizer (GWO), moth-flame optimization (MFO), whale… More >

  • Open Access

    ARTICLE

    Web Layout Design of Large Cavity Structures Based on Topology Optimization

    Xiaoqiao Yang, Jialiang Sun*, Dongping Jin

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2665-2689, 2024, DOI:10.32604/cmes.2023.031482

    Abstract Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades and wings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumption has become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topology optimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By using the variable density method, lightweight design is achieved without compromising structural strength. The optimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivity filtering and projection to obtain a robust optimized configuration. The mechanical properties are… More >

  • Open Access

    ARTICLE

    The Optimization Design of the Nozzle Section for the Water Jet Propulsion System Applied in Jet Skis

    Cheng-Yeh Li, Jui-Hsiang Kao*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2277-2304, 2024, DOI:10.32604/cmes.2023.030215

    Abstract The performance of a water jet propulsion system is related to the inlet duct, rotor, stator, and nozzle. Generally, the flow inlet design must fit the bottom line of the hull, and the design of the inlet duct is often limited by stern space. The entire section, from the rotor to the nozzle through the stator, must be designed based on system integration in that the individual performance of these three components will influence each other. Particularly, the section from the rotor to the nozzle significantly impacts the performance of a water jet propulsion system. This study focused on nozzle… More >

  • Open Access

    ARTICLE

    Design and Implementation of Quantum Repeaters: Insights on Quantum Entanglement Purification

    Karoki A. Mũgambi*, Geoffrey O. Okeng’o

    Journal of Quantum Computing, Vol.5, pp. 25-40, 2023, DOI:10.32604/jqc.2023.045654

    Abstract Quantum communication is a groundbreaking technology that is driving the future of information transmission and communication technologies to a new paradigm. It relies on quantum entanglement to facilitate the transmission of quantum states between parties. Quantum repeaters are crucial for facilitating long-distance quantum communication. These quantum devices act as intermediaries between adjacent communication channel segments within a fragmented quantum network, allowing for entanglement swapping between the channel segments. This entanglement swapping process establishes entanglement links between the endpoints of adjacent segments, gradually creating a continuous entanglement connection over the entire length of the transmission channel. The established quantum link can… More >

  • Open Access

    ARTICLE

    Design Optimization of Permanent Magnet Eddy Current Coupler Based on an Intelligence Algorithm

    Dazhi Wang*, Pengyi Pan, Bowen Niu

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1535-1555, 2023, DOI:10.32604/cmc.2023.042286

    Abstract The permanent magnet eddy current coupler (PMEC) solves the problem of flexible connection and speed regulation between the motor and the load and is widely used in electrical transmission systems. It provides torque to the load and generates heat and losses, reducing its energy transfer efficiency. This issue has become an obstacle for PMEC to develop toward a higher power. This paper aims to improve the overall performance of PMEC through multi-objective optimization methods. Firstly, a PMEC modeling method based on the Levenberg-Marquardt back propagation (LMBP) neural network is proposed, aiming at the characteristics of the complex input-output relationship and… More >

  • Open Access

    ARTICLE

    Machine Learning Design of Aluminum-Lithium Alloys with High Strength

    Hongxia Wang1,2, Zhiqiang Duan2, Qingwei Guo2, Yongmei Zhang1,2,*, Yuhong Zhao2,3,4,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1393-1409, 2023, DOI:10.32604/cmc.2023.045871

    Abstract Due to the large unexplored compositional space, long development cycle, and high cost of traditional trial-anderror experiments, designing high strength aluminum-lithium alloys is a great challenge. This work establishes a performance-oriented machine learning design strategy for aluminum-lithium alloys to simplify and shorten the development cycle. The calculation results indicate that radial basis function (RBF) neural networks exhibit better predictive ability than back propagation (BP) neural networks. The RBF neural network predicted tensile and yield strengths with determination coefficients of 0.90 and 0.96, root mean square errors of 30.68 and 25.30, and mean absolute errors of 28.15 and 19.08, respectively. In… More >

Displaying 31-40 on page 4 of 611. Per Page